2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Докажите, что в последоватльности бесконечно много составных
Сообщение30.09.2018, 00:16 
Аватара пользователя


01/12/11

8634
Докажите, что в последовательности
$$14^2+1,\quad 24^2+1,\quad 34^2+1,\quad 54^2+1,\quad 84^2+1,\quad\dots$$ бесконечно много составных чисел.

Последовательность строится так: к очередному числу Фибоначчи приписывается справа четвёрка, затем вся эта конструкция возводится в квадрат и увеличивается на 1.

 Профиль  
                  
 
 Re: Докажите, что в последоватльности бесконечно много составных
Сообщение30.09.2018, 10:12 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Если раскрыть скобки, то можно сразу предположить кандидата в делители. И он выигрывает гонку!

 Профиль  
                  
 
 Re: Докажите, что в последоватльности бесконечно много составных
Сообщение30.09.2018, 10:27 
Аватара пользователя


01/12/11

8634
gris
Не совсем понимаю. Разве среди чисел Фибоначчи бесконечно много, например, кубов?

 Профиль  
                  
 
 Re: Докажите, что в последоватльности бесконечно много составных
Сообщение30.09.2018, 10:41 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Если мы напишем формулу для нашей последовательности в виде $k_n=(10\cdot f_n+4)^2+1$ и предположим, что в искомой бесконечной подпоследовательности составных чисел есть подподпоследовательность чисел, кратных некоторому конкретному числу, то можем предположить, что это за число, а потом немного утомительным арифмостом подтвердить предположение. Скорее всего, есть более красивое и короткое рассуждение. А кубы как бы и не при делах вовсе.

 Профиль  
                  
 
 Re: Докажите, что в последоватльности бесконечно много составных
Сообщение01.10.2018, 17:06 
Аватара пользователя


07/01/16
1612
Аязьма
$f_9$ делится на $17$, а, значит, и $f_{18},f_{36},f_{72}\ldots$, а это уже достаточно бесконечно много :-)

 Профиль  
                  
 
 Re: Докажите, что в последоватльности бесконечно много составных
Сообщение01.10.2018, 20:35 
Аватара пользователя


07/01/16
1612
Аязьма
А... просто $f_{9k}$ тоже подойдёт

-- 01.10.2018, 21:34 --

А вот еще: минимально возможный простой делитель у членов этой серии - $13$, и делятся на него констрюкции с номерами $28k+4$ и $28k+10$ (при нумерации с нуля, $f_0=0,f_1=1,\ldots$)

 Профиль  
                  
 
 Re: Докажите, что в последоватльности бесконечно много составных
Сообщение01.10.2018, 22:27 
Аватара пользователя


01/12/11

8634
gris
waxtep
Большое спасибо!

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group