В-общем, Вы сами работаете с ней далее, как с функцией, так чего не считать ее функцией (непривычно заданной, непонятного вида, только с одним известным локальным свойством, но всё же -- функцией)?
Чем считать

я не знаю. Предполагаю что там все не так просто. Поэтому мне нужно было нечто, при помощи чего можно было бы проверять интуитивное понимание и самостоятельно разбираться, когда написано что-то непонятное. Например, я интуитивно понял, что

функция бесконечно малая по сравнению с исходной. Тогда может показаться, что

- бесконечно малая в сравнении с бесконечно малой в сравнении с исходной. Дальше, с одной стороны как бы одна функция, с другой не одна функция, значит на выходе я получу... на этом этапе я понимаю, что запутался. Нужно взять и все сделать по определению, но определения

у меня нет. Есть равенство, про которое я интуитивно знаю, что это не совсем равенство и свойств этого "нового" равенства я не знаю, значит записать все формально я уже не могу. В Зориче был похожий пример про

, я сделал аналогично и все получилось. После этого у меня появилась идея использовать прием из примера как определение. Проблема в том, что я не разобрался с вопросом, но уже придумываю(угадываю) определение. Поэтому я и решил спросить верна ли моя догадка(это и есть мой исходный вопрос) Похоже, что я все таки угадал и теперь могу формально проверять выражения с

. Это то, что мне было нужно.
thething,
mihaildСпасибо, что разобрали со мной исходное определение. Теперь оно мне понятно.
grizzlyСпасибо за подсказки касательно того как понять

интуитивно. Сейчас мне все это пригодится.
современные определения

и

как множества
Хоть Вы это писали и не мне, но прочесть было полезно. Теперь я знаю, что до полного понимания

еще очень далеко. Спасибо.