2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Цепь на двух гвоздях
Сообщение03.09.2018, 08:21 


02/09/18
29
Замкнутая цепочка вешается на два гвоздя. Силами сцепления пренебрегаем. Диаметр гвоздей нулевой (точки).
В зависимости от положения гвоздей и длины цепочки она может провиснуть двумя способами:
- двумя одинаковыми половинками;
- двумя отрезками разной длины.
Оценить критерии, определяющие эти два способа провисания.
Задачу можно решать аналитически, числено, а также гибридно, перемешивая эти два метода.
Решение можно начать со случая, когда гвозди находятся на одном уровне.

 Профиль  
                  
 
 Re: Цепь на двух гвоздях
Сообщение03.09.2018, 09:31 
Аватара пользователя


11/12/16
14495
уездный город Н
OchkovVF

1. Введем параметр $\kappa$ - доля в которой цепочка делится гвоздями на две части.
2. Считаем положение ц.м. для каждой части (по вертикали: $y_1$ и $y_2$)
3. Считаем массу каждой части ($m_1$, $m_2$)
4. Считаем потенциальную энергию $U(\kappa) = m_1(\kappa)y_1(\kappa) + m_2(\kappa)y_2(\kappa)$
5. Ищем минимумы.

Насколько понимаю, все там проинтегрируется, а потом продифференцируется.
В пункте 5 может возникнуть трансцендентное уравнение.

В чем прелесть задачи?

 Профиль  
                  
 
 Re: Цепь на двух гвоздях
Сообщение03.09.2018, 10:41 


02/09/18
29
Спасибо за отклик!
Все что вы написали - это тривиально и понятно.
Вопрос в том, какие критерии (четкие или размытые) определяют вид провисающей замкнутой цепочки?

 Профиль  
                  
 
 Re: Цепь на двух гвоздях
Сообщение13.09.2018, 20:39 
Заслуженный участник


10/01/16
2318
Реализовав программу, предложенную EUgeneUS, после чудесных сокращений, получаем: происходит классическая бифуркация "вилка". Если расстояние между гвоздями фиксировано, и равно $2a$, гвозди - на одной высоте (это нам ТС разрешил), длина цепи равна $2L$, то бифуркация случится при критическом значении $L_{\ast} = 2a\cdot b$, $b =2\frac{\sh x}{x}$, где $x$ - корень уравнения $x \sh x= \ch x$ (он - единственный): при малой длине цепи отрезки будут равными, при большЕй - неравными.
Вот только непонятно - критерий этот - он четкий или размытый?....

 Профиль  
                  
 
 Re: Цепь на двух гвоздях
Сообщение13.09.2018, 22:04 


02/09/18
29
Браво! Бифуркация замкнутой цепочки длиной 2L, висящей на двух гвоздях, расположенных на одном уровне на расстоянии друг от друга $2a$, происходит при $L/4a=1.258…$
Сделайте поиск в Интернете по ключу "Catenary 1.258"!
Я имел нахальство назвать эту константу "цепное число PI". При этом соотношении силы, приложенные к цепи на ее концах, будут минимальными!

 Профиль  
                  
 
 Posted automatically
Сообщение13.09.2018, 22:24 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Олимпиадные задачи (М)» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы).

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение14.09.2018, 23:54 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Карантин» в форум «Олимпиадные задачи (М)»

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group