2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6, 7 ... 15  След.
 
 Re: Производная
Сообщение13.07.2018, 13:59 
Solaris86 в сообщении #1326486 писал(а):
Я не понял, тут не хватает $f(x)$: $f(x + \Delta x) - f(x)= A\Delta x + \text{что-то}$ или это что-то другое имеется в виду?
Да, я забыл вписать постоянное слагаемое. Сейчас вставлю назад. В результате получается сумма постоянного, линейного и чего-то более высокого порядка — совершенно логичное разложение.

Solaris86 в сообщении #1326486 писал(а):
А чем треугольная дельта не устраивает и почему она не подходит для более широкого применения (и какого именно)?
Дельта это вообще просто соглашение в обозначении переменных, она о другом. Какого именно — ну вас уже ведь ссылали на символы Ландау, все эти о-малые, о-большие, омеги и прочие, они образуют довольно удобную систему для разговоров о поведении функций при некоторой базе: удобную тем, что ненужные детали не мешаются под ногами. Чем меньше имён приходится вводить перед рассмотрением, тем лучше. Всегда. И эти как раз позволяют экономить.

Solaris86 в сообщении #1326486 писал(а):
Хорошо.
dx - дифференциал х.
Дифференциал - произвольное бесконечно малое приращение переменной величины (согласно гуглу)
Даже гугл даёт разные ответы, а вам вообще предложено было консультироваться с учебником. Потому что нужно выстраивать цельную картину.

 
 
 
 Re: Производная
Сообщение13.07.2018, 14:20 
Solaris86 в сообщении #1326486 писал(а):
Что же такое дифференциал, стало совсем неясно.

... это линейная часть приращения :mrgreen: Если прирастает независимая переменная $x$, то считается, что прирастает она в принципе линейно всегда и везде и поскольку $x(x)=x$ то $x'(x) \equiv 1$ и получается что $dx=x'(x)\cdot \Delta x=1 \cdot \Delta x = \Delta x$ для любых значений $x$ А вот прирост зависимой переменной уже зависит от двух параметров: от значения независимой переменной в той точке, откуда считают прирост, и от прироста независимой переменной. Кроме того, этот прирост зависимой переменной искусственно разделяют на линейную и нелинейную части, и вот линейную часть, то есть прямо пропорциональную приросту независимой переменной, называют дифференциалом независимой переменной: $dy=A \cdot dx$
Solaris86 в сообщении #1326486 писал(а):
Да, я понимаю эту картинку. Это пока всё, что мне понятно)

Изображение
Так вот на картинке нет никаких бесконечно малых. $dx$ может быть любым -- и большим и малым. Соответственно и $dy$ может быть как большим так и малым.

Может быть даже интересней. Если $y(x)=x^2$, то в точке $x_0=0$ дифференциал $dy(x_0=0;dx) \equiv 0$ -- равен нулю независимо от того чему равен дифференциал независимой переменной $dx$. В этой точке о-малое из старта темы всегда больше чем $dy$ (поскольку в этой точке $dy=0$) :mrgreen:

Еще картинка, где обозначено о-малое:
Изображение

 
 
 
 Re: Производная
Сообщение13.07.2018, 14:53 
Аватара пользователя
Solaris86 в сообщении #1326464 писал(а):
1. Что нам даёт тот факт, что $o(\Delta x)$ стремится к 0 быстрее, чем $\Delta x$?

Даёт то, что можно приближённо заменить приращение функции её дифференциалом, причём относительная погрешность такой замены будет сколь угодно мала при достаточно малом $\Delta x$. Это, в свою очередь даёт нам возможность в достаточно малой окрестности точки $x_0$ рассматривать простую линейную функцию вместо исходной сложной нелинейной, что особенно полезно в приближённых вычислениях.
Solaris86 в сообщении #1326464 писал(а):
2. На каком основании приравнивают $\Delta x  = dx$?!

По определению, по соглашению. А можно даже доказать (см. Otta).

 
 
 
 Re: Производная
Сообщение13.07.2018, 14:54 
Аватара пользователя
Solaris86 в сообщении #1326478 писал(а):
Так и неясно, что с того, что я знаю, что одно стремится к 0 быстрее, чем другое?! Как я дальше использую этот факт, или это факт ради факта во имя повышения математической энциклопедичности?
Очевидно, Вы никак не используете, потому и не понимаете.
Предположим, что Вам известно, что $\Delta f(x_0)=f(x_0+\Delta x)-f(x_0)=A\Delta x+o(\Delta x)$, где $A$ — некоторое число. Пожалуйста, найдите $f'(x_0)$, пользуясь непосредственно определением производной. Если и после этого не поймёте, зачем это условие, то я уж и не знаю, как Вам помочь.

На ту же тему сообщение Otta. Тоже разберите.

Solaris86 в сообщении #1326478 писал(а):
Вбил в гугл "дифференциал"
Первое вылезшее определение "В математике: произвольное бесконечно малое приращение переменной величины."
Без комментариев...
Комментарий: мало ли всякой чуши можно найти на просторах интернета.

 
 
 
 Re: Производная
Сообщение13.07.2018, 14:58 
thething в сообщении #1326500 писал(а):
. А можно даже доказать

Да тут уже раза четыре доказали, еще бы кто осознал.

 
 
 
 Re: Производная
Сообщение13.07.2018, 22:20 
thething в сообщении #1326500 писал(а):
даёт нам возможность в достаточно малой окрестности точки $x_0$ рассматривать простую линейную функцию вместо исходной сложной нелинейной, что особенно полезно в приближённых вычислениях.

Что в приближённых вычислениях -- бесполезно чуть более чем абсолютно. Те, приближённые времена давно ушли.

Не пудрите пацану мозги. Оно полезно лишь с сугубо теоретической точки зрения. Но зато эта полезность -- не отомрёт тоже приблизительно никогда.

 
 
 
 Re: Производная
Сообщение13.07.2018, 22:35 
Аватара пользователя
Solaris86 в сообщении #1326478 писал(а):
Так и неясно, что с того, что я знаю, что одно стремится к 0 быстрее, чем другое?! Как я дальше использую этот факт, или это факт ради факта во имя повышения математической энциклопедичности?

А я-то откуда знаю? Вы процитировали кусок неизвестно чего неизвестно откуда. Зачем он вам самому нужен? Это только вы знаете.

Solaris86 в сообщении #1326478 писал(а):
Зачем выдумывать новое обозначение просто так?

Оно не просто так, но оно становится особенно удобным, важным и нужным в других задачах. До которых вы ещё не добрались.

Solaris86 в сообщении #1326478 писал(а):
...тогда dx для меня станет тем же самым, что и понятие точки в в геометрии - понятие, у которого вообще нет определения...

Это означает, что вы очень паршиво знакомы с геометрией.

-- 13.07.2018 22:36:25 --

ewert в сообщении #1326579 писал(а):
Те, приближённые времена давно ушли.

Не несите бред.

 
 
 
 Re: Производная
Сообщение13.07.2018, 22:42 

(Оффтоп)

Munin в сообщении #1326584 писал(а):
Не несите бред.

Вы просто не в курсе. Речь шла о вычислениях, а не о прикидках (если, конечно, Вы имеете представление хоть о том, хоть о другом).

 
 
 
 Re: Производная
Сообщение13.07.2018, 22:45 
Аватара пользователя
Я-то имею. И именно поэтому прошу вас прекратить нести бред.

 
 
 
 Re: Производная
Сообщение13.07.2018, 22:52 

(Оффтоп)

Munin в сообщении #1326586 писал(а):
Я-то имею.

Это ложное утверждение. Поскольку Вы явно не имеете представления о различии между этими двумя понятиями. А оно существенно, выдам тайну.

 
 
 
 Re: Производная
Сообщение14.07.2018, 01:03 
Всем спасибо за помощь! Сейчас всё перечитал и вот что есть из понимания и непонимания на данный момент.

1.
Munin в сообщении #1325447 писал(а):
Это не функция, это обозначение.

Я понял, что это обозначение, но не ясно, почему нелинейную часть приращения функции нельзя считать функцией от приращения аргумента?!
Munin в сообщении #1326470 писал(а):
Ещё раз, это не функция!!!
Это всего лишь обозначение, что "$g(\Delta x)$ стремится к 0 быстрее, чем $\Delta x$".

Но на оси OY эта "нефункция" имеет свой отрезок... Что это тогда?

2.
gefest_md в сообщении #1325567 писал(а):
Подразумевается, что $h$ в выражении $o(h)$ это тождественная функция, а не переменная. Правильнее $o(\rm{id}(h))$ или $o(\rm{id})$. Тогда пришлось бы явно указать где $\rm{id}$ определена. В «правильном» определении вошли бы дополнительно две буквы: $\rm{id}$ и $X=\rm{dom}(\rm{id}).$

Тут совсем неясно, с этими id я вообще не знаком. Буду признателен, если подскажете, в каком разделе математики можно изучить эти обозначения.

3.
gefest_md в сообщении #1325576 писал(а):
или что найдется $\alpha=o(h)$ такое, что $\forall h\colon{\displaystyle f(x_{0}+h)=f(x_{0})+Ah+\alpha(h)}$. Поэтому подставлять $h=1$ можно только после того, как выбрана $\alpha.$

Тут имеется в виду, что альфа - это б.м.ф.?

4.
thething в сообщении #1325582 писал(а):
Да тут в этом определении
Solaris86 в сообщении #1325446

писал(а):
функцию в окрестности ${\displaystyle U(x_{0})}$ можно представить в виде ${\displaystyle f(x_{0}+h)=f(x_{0})+Ah+o(h)}$
просто упущена концовка. В таких равенствах с о-малыми всегда через запятую надо указывать базу, в данном случае, $h\to 0$. Указание базы, по-моему, как раз и отбивает желание подставлять конкретные $h$ (по крайней мере внутрь значка $o$).

О какой базе идёт речь, в каком разделе математики про это почитать?

5.
Otta в сообщении #1326384 писал(а):
Solaris86 в сообщении #1326380

писал(а):
Вообще, о-функция - это вариант б.м.ф. или нет?

Не обязательно (обоснуйте). Но бесконечно малую функцию можно записать в виде $o(1)$. Обоснуйте, почему.

Вроде готов рискнуть предположить.
О-функция является б.м.ф. при условии: $\lim\limits_{\Delta x\to 0} o(\Delta x) = 0$ и не является б.м.ф. в остальных случаях.
Б.м.ф., например, $f(x)$ можно записать в виде $o(1)$, т.е. $f(x) = o(1)$ при условии, что $\lim\limits_{ x\to x_0} f(x) = 0$ и $x_0 \not = 1$. Это возможно потому, что 1 - это константа, она не убывает или иными словами скорость убывания равна 0, поэтому любая другая функция, не являющаяся константой, всегда будет убывать быстрее.

6.
arseniiv в сообщении #1326474 писал(а):
$dx$ — это самый нормальный дифференциал $x$, если не забывать, что сама $x$ является переменной, от которой мы рассматриваем тут функции. Этот дифференциал (как и другие!) является функцией двух переменных — $x$ и $\Delta x\equiv h$, но от $x$ он не зависит никак и равен просто $\Delta x$. В этом смысле $dx = \Delta x$, хотя точнее будет писать, конечно, что $dx(x, \Delta x) = \Delta x$. Этого обычно не пишут, или пишут лишь единожды за всё изложение, потому что это и так ясно из определения дифференциала, и, кроме того, это вынуждает нас вводить какое-то обозначение для переменной-приращения. Так что $dx$ использовать удобнее.

wrest в сообщении #1326493 писал(а):
Solaris86 в сообщении #1326486

писал(а):
Что же такое дифференциал, стало совсем неясно.
... это линейная часть приращения :mrgreen: Если прирастает независимая переменная $x$, то считается, что прирастает она в принципе линейно всегда и везде и поскольку $x(x)=x$ то $x'(x) \equiv 1$ и получается что $dx=x'(x)\cdot \Delta x=1 \cdot \Delta x = \Delta x$ для любых значений $x$ А вот прирост зависимой переменной уже зависит от двух параметров: от значения независимой переменной в той точке, откуда считают прирост, и от прироста независимой переменной. Кроме того, этот прирост зависимой переменной искусственно разделяют на линейную и нелинейную части, и вот линейную часть, то есть прямо пропорциональную приросту независимой переменной, называют дифференциалом независимой переменной: $dy=A \cdot dx$

Эти два сообщения дали ответ на вопрос о приравнивании приращения аргумента к дифференциалу аргумента.
Объединяя информацию из двух сообщений, я понял так:
$dx (x,\Delta x) = x'(x)\cdot \Delta x=1 \cdot \Delta x = \Delta x$; 2 вида записи: $dx (x,\Delta x) = \Delta x$ - развернутая запись, $dx = \Delta x$ - сокращённая запись.
$dy (x,\Delta x) = y'(x)\cdot \Delta x=A \cdot \Delta x = A\Delta x$; 2 вида записи: $dy (x,\Delta x) = A\Delta x$ - развернутая запись, $dy = A\Delta x$ - сокращённая запись.
Не понял, с какой целью были использованы знаки тождественного равенства в выражениях: $\Delta x\equiv h$ и $x'(x) \equiv 1$.
Ещё вопрос: можно ли дифференциал считать оператором?

7.
Munin в сообщении #1326470 писал(а):
А слова, что "$dx$ - бесконечно малое приращение", выкиньте из головы.

wrest в сообщении #1326493 писал(а):
Так вот на картинке нет никаких бесконечно малых. $dx$ может быть любым -- и большим и малым. Соответственно и $dy$ может быть как большим так и малым.

Итак, я понял следующее:
1) дифференциал функции или аргумента - это линейная часть приращения функции или аргумента соответсвенно
2) дифференциал функции или аргумента - это конечная величина, могущая принимать любые значения: $0 < |dx| <\infty$ и $0 < |dy| <\infty$
Я так понял, что Munin негодовал именно по поводу того, что я брал бесконечную величину, во-первых, да еще и только малую, во-вторых...
Значит, моё предположение, что дифференциал - это числовой ряд, неверно.

8.
Otta в сообщении #1326489 писал(а):
Ну вот вы выделяете постоянную часть функции $\Delta x\mapsto f(x + \Delta x)$, а именно $f(x)\equiv A_0$, потом линейную часть: выделили, назвали её $A_1\Delta x$. Если вы теперь хотите записать, что $f(x + \Delta x) = A_0 + A_1\Delta x + \text{что-то}$, то этим чем-то как раз и окажется $o(\Delta x)$.

ewert в сообщении #1326579 писал(а):
Предположим, что Вам известно, что $\Delta f(x_0)=f(x_0+\Delta x)-f(x_0)=A\Delta x+o(\Delta x)$, где $A$ — некоторое число. Пожалуйста, найдите $f'(x_0)$, пользуясь непосредственно определением производной. Если и после этого не поймёте, зачем это условие, то я уж и не знаю, как Вам помочь.

Что совсем непонятно, так это обозначение $\Delta f(x_0)$... Наверно, имелось в виду $\Delta y$ всё-таки
$\Delta y=f(x_0+\Delta x)-f(x_0)=A\Delta x+o(\Delta x)$
$y' = \lim\limits_{\Delta x\to 0}\frac {\Delta y}{\Delta x}=\lim\limits_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=\lim\limits_{\Delta x\to 0}\frac{A\Delta x+o(\Delta x)}{\Delta x} = \lim\limits_{\Delta x\to 0}\frac{A\Delta x}{\Delta x} + \lim\limits_{\Delta x\to 0}\frac {o(\Delta x)}{\Delta x} = A + 0 = A$
Кажется, прояснилось: если в числителе слагаемого $\lim\limits_{\Delta x\to 0}\frac {o(\Delta x)}{\Delta x}$ будет б.м.ф. того же или большего порядка, что и б.м.ф. $\Delta x$ в знаменателе, то предел будет не 0, а либо конечно число, либо бесконечность... Тут единственная проблема: мне не представить функцию, у которой предел второго слагаемого будет конечное число или бесконечность. Я понимаю, что они должна быть недифференцируема вообще, но что это за функция, пока неясно.

 
 
 
 Re: Производная
Сообщение14.07.2018, 02:29 
Аватара пользователя
Solaris86 в сообщении #1326617 писал(а):
Тут совсем неясно, с этими id я вообще не знаком.
Так я обозначил тождественное отображение.

Solaris86 в сообщении #1326617 писал(а):
Тут имеется в виду, что альфа - это б.м.ф.?
Точнее сказать $\alpha(h)=\beta(h)\cdot \operatorname{id}(h)=\beta(h)\cdot h$ для любого $h$ из некоторой окрестности точки $0$, где $\lim\limits_{h\to 0}\beta(h)=0$ (б.м.ф.)

 
 
 
 Re: Производная
Сообщение14.07.2018, 05:42 
Аватара пользователя
Solaris86 в сообщении #1326617 писал(а):
О какой базе идёт речь, в каком разделе математики про это почитать?

О базе проколотых окрестностей точки 0. См., например, в Зориче. Да и насчет о-малых и больших, дифференциалов, производных, пределов, тоже там почитайте, или в Фихтенгольце, а то у Вас дифференциал -- это был ряд.. Нельзя же так, впрыгивать в тему с середины, целенаправленно надо, последовательно и постепенно.

-- 14.07.2018, 08:13 --

(ewert)

Не знаю, как у Вас, но у нас после слов, что что-то "полезно с сугубо теоретической точки зрения", отпадает примерно 4/5 желающих вникать во всю эту теорию

 
 
 
 Re: Производная
Сообщение14.07.2018, 11:25 
Аватара пользователя
Solaris86 в сообщении #1326617 писал(а):
Я понял, что это обозначение, но не ясно, почему нелинейную часть приращения функции нельзя считать функцией от приращения аргумента?!

С чего вы взяли, что "нельзя", когда все вокруг именно так её и считают?

Solaris86 в сообщении #1326617 писал(а):
Но на оси OY эта "нефункция" имеет свой отрезок...

С чего вы это взяли? Откуда вы вытаскиваете эту чушь?

Solaris86 в сообщении #1326617 писал(а):
Ещё вопрос: можно ли дифференциал считать оператором?

Вы вряд ли знаете, что такое оператор, так что лучше не надо. Не пользуйтесь теми словами, которых вы не знаете.

 
 
 
 Re: Производная
Сообщение14.07.2018, 11:53 
Аватара пользователя

(Оффтоп)

Munin в сообщении #1326659 писал(а):
С чего вы взяли, что "нельзя", когда все вокруг именно так её и считают?
Munin в сообщении #1326659 писал(а):
С чего вы это взяли? Откуда вы вытаскиваете эту чушь?
Чего Вы удивляетесь? Человеку четвёртую страницу пытаются объяснить простейший вопрос, а он продолжает выдумывать глупости. Типичный тролль прикидывается дурачком.

 
 
 [ Сообщений: 221 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7 ... 15  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group