Доброго времени суток!
Пытаюсь решить задачку из двух пунктов следующего содержания:
нужно показать, что при наклонном падении под произвольным углом электромагнитной волны на плазму, поверхностную волну сгенерировать невозможно, т.е. среди отраженной и прошедшей волн не будет моды, распространяющейся вдоль поверхности-это первая часть задачи. Как мне сказали, это должно вытекать из закона дисперсии и того факта, что не могут выполняться законы сохранения при конверсии поперечной волны в поверхностную волну. К сожалению, после тщетных попыток найти подробную информацию по сказанному и решить задачу в данном ключе, я написал решение в следующем виде:
предполагая, что на плазму падает ТЕ-волна, выражение для заданной падающей и искомых отраженной и преломленной волны будет иметь следующий вид:


,

,
где

- амплитуды падающей, отраженной и преломленной волн.
Используя граничные условия

,

,

,

,

,

,

,

,

- коэффициент отражения.
Коэффициент отражения имеет полюс при частотах, соответствующих поверхностной волне. Учитывая, что для падающей волны справедливо

, а для поверхностной

, то возбуждение поверхностной волны при падении внешней волны на плоскую поверхность раздела оказывается невозможным.
И меня беспокоит насколько данное решение корректно, а также непосредственно второй пункт задачи, к которому я не знаю как подобраться (быть может вы порекомендуете какую-нибудь литературу, если таковая имеется) :
найти способ генерации поверхностной волны с помощью модуляции плотности поверхности плазмы, например, с помощью дифракционной решетки, а именно найти угол падения и период модуляции при котором наряду с отраженной волной появляется волна поверхностная, то есть кроме продольной и поперечной волны должна появиться ещё одна волна, в совокупности с которой должны выполняться законы сохранения и происходить конверсия, обозначенная в условии к первому пункту задаче.
Я в тупике и очень нуждаюсь в вашей помощи!
Заранее спасибо!