Ну давайте смотреть. Сначала обнаружим, что все, что нас интересует, является (с точностью до постоянных слагаемых) углами или сторонами того самого треугольника (именуемого параллактическим).
В принципе, можно сразу воспользоваться т.н. "формулой четырех элементов", тогда

откуда

и

На картинке выше азимут астрономический, т.е. отсчитываемый от точки юга (географический отличается от него всегда ровно на

), но для тангенса это несущественно.
Получается очень похоже, но, по идее,

, т.е.
wrest, по-видимому, все же перепутал часовой угол с истинным солнечным временем (хотя ручаться не буду - на память ответ я не помню, а в выкладках мог и наврать, так что если хочется, лучше проверяйте).
В принципе, формулу четырех элементов кроме астрометристов, геодезистов и штурманов мало кто знает, поэтому можно и честно вывести то же самое из теорем косинусов и синусов, но тут уж писать все выкладки мне лень, поэтому я просто опишу схему. Берем теорему косинусов для трех сторон и угла при зените. В ней получается косинус высоты, который можно выразить из теоремы синусов (углы при зените и при полюсе и противолежащие стороны), и синус высоты, который можно выразить из теоремы косинусов с углом при полюсе. В итоге должно получиться выражение, которое после упрощения даст уже записанный выше результат.
-- 15.06.2018, 01:16 --Интересующая формула:

Кстати, тогда тут тоже может быть ошибка. Это правильно, если

, т.е. нуль соответствует верхней кульминации (т.е. истинному полудню для Солнца), и тогда и дальше все сходится. Если же это все-таки истинное солнечное время (которое, как и в обычной жизни, принято отсчитывать от полуночи), то плюс в формуле должен превратиться в минус.