2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Primeful Heterosquares
Сообщение09.06.2018, 14:39 
Аватара пользователя


01/06/12
1016
Adelaide, Australia
У меня появилась новая задача опубликована тут: http://www.primepuzzles.net/coll20th/coll20th-003.htm

Вот перевод.
Заполните NxN квадрат позитивными целыми числами с минимальной суммой так чтобы:

1. Суммы всех рядов, столбов и двух главных диагоналей были различные простые числа.

или

2. Суммы всех рядов, столбов и всех сломанных диагоналей были различные простые числа.

Найдите решения с минимальной суммой для N>3.

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение09.06.2018, 14:41 


21/05/16
4292
Аделаида
dimkadimon в сообщении #1318419 писал(а):
сломанных диагоналей

А что это?

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение09.06.2018, 14:47 
Аватара пользователя


01/06/12
1016
Adelaide, Australia
Сломанная диагональ это диагональ которая проходит через границу квадрата. Вот вики:

https://en.wikipedia.org/wiki/Broken_diagonal

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение09.06.2018, 17:09 
Модератор
Аватара пользователя


11/01/06
5702
dimkadimon, для чистоты русского языка:
"позитивными целыми числами" = положительными целыми числами
"сломанная диагональ" = ломаная диагональ

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение10.06.2018, 03:30 
Аватара пользователя


01/06/12
1016
Adelaide, Australia
maxal в сообщении #1318459 писал(а):
dimkadimon, для чистоты русского языка:

Да спасибо. Жалко что не могу отредактировать старое сообщение.

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение10.06.2018, 18:37 


16/08/05
1153
Спасибо за отличную задачу! По сложности вроде не уступает пандиагональным квадратам из простых чисел.

Для N4 (2-я подзадача) минимальная сумма 540?

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение10.06.2018, 20:27 


16/08/05
1153
Цитата:
Для N4 (2-я подзадача) минимальная сумма 540?

266?

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение11.06.2018, 05:22 
Аватара пользователя


01/06/12
1016
Adelaide, Australia
dmd в сообщении #1318772 писал(а):
Спасибо за отличную задачу! По сложности вроде не уступает пандиагональным квадратам из простых чисел.

Спасибо, рад что вам понравилась.

dmd в сообщении #1318801 писал(а):
266?

Хороший результат. Можно еще лучше.

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение11.06.2018, 10:51 


16/08/05
1153
190?

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение11.06.2018, 13:34 
Аватара пользователя


01/06/12
1016
Adelaide, Australia
Можно лучше :)

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение11.06.2018, 15:10 
Аватара пользователя


01/06/12
1016
Adelaide, Australia
Кстати для нечетных N задачу можно еще усложнить - можно требовать чтобы все числа квадраты были тоже простые (и отличались от всех сумм).

-- 11.06.2018, 21:18 --

И вот первый такой пример для 3х3:

sum=213
5 19 13
17 3 47
7 31 71

Unique primes: 3 5 7 13 17 19 23 29 31 37 47 53 61 67 71 73 79 83 107 109 131

-- 11.06.2018, 21:53 --

Оказывается такие примеры есть для N=5, 7 и 9. Их даже не так трудно найти, но пока не буду выкладывать.

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение12.06.2018, 11:19 


16/08/05
1153
Извиняюсь за возможно глупый вопрос, а как на сайте primepuzzles.net отправлять решения? Просто почтой на адрес cbrfgm@gmail.com отправить? И в каком формате?

Улучшил решение для N4(2). Какими найденными значениями можно делиться здесь на форуме, пока идёт конкурс? И сколько времени он идёт (и идёт ли ещё)?

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение12.06.2018, 16:05 
Аватара пользователя


01/06/12
1016
Adelaide, Australia
dmd в сообщении #1319237 писал(а):
Извиняюсь за возможно глупый вопрос, а как на сайте primepuzzles.net отправлять решения? Просто почтой на адрес cbrfgm@gmail.com отправить? И в каком формате?

Вопрос совсем не глупый. Да верно пишите по тому адресу. Формат можно любой, главное чтобы было понятно. Можно даже отдельный файл приложить.

dmd в сообщении #1319237 писал(а):
Улучшил решение для N4(2). Какими найденными значениями можно делиться здесь на форуме, пока идёт конкурс? И сколько времени он идёт (и идёт ли ещё)?

Отличная работа! Конкурс идет неделю. Я думаю Карлос не против если вы поделитесь результатами, все равно он скоро опубликует. Если не уверены то можете писать мне в личку.

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение12.06.2018, 20:27 


16/08/05
1153
Спасибо за ответ. Для N4.2 нашел квадрат с суммой 178. Для N5.2 пока нет никаких результатов.

(Визуализация в GeoGebra)

попробовал сделать проверку для найденных квадратов

https://www.geogebra.org/m/ShPqmBCj

принимает в формате {{7,9,27},{5,13,49},{1,15,3}}

если потрудиться над доработкой, то можно проверку на простоту добавить (IsPrime() команда есть); цветами раскрасить по условиям, наверное тоже можно.

 Профиль  
                  
 
 Re: Primeful Heterosquares
Сообщение13.06.2018, 04:16 
Аватара пользователя


01/06/12
1016
Adelaide, Australia
У меня тоже 178 получилось, наверное минимум.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 20 ]  На страницу 1, 2  След.

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Dmitriy40


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group