2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Занимательная огородная задачка
Сообщение29.04.2018, 20:59 
Аватара пользователя


14/08/12
309
Я посадил рассаду. Немного, на 2 небольших грядках. В каждую лунку я посадил по 1 растению.
Общее количество рассады по удивительному совпадению оказалось суммой квадратов двух соседних чисел.
Одна грядка действительно квадратная, число рядов равно числу растений в ряде.
Вторая же могла бы тоже быть квадратной, но имеет число рядов меньшее, чем число растений в своём ряду, на число рядов в первой грядке.
Сколько всего растений я посадил?

 Профиль  
                  
 
 Re: Занимательная огородная задачка
Сообщение29.04.2018, 21:18 
Аватара пользователя


07/01/16
1612
Аязьма
Например, чертову дюжину: $2^2+3^2=3^2+4\cdot(4-3)$

 Профиль  
                  
 
 Re: Занимательная огородная задачка
Сообщение29.04.2018, 22:18 
Аватара пользователя


14/08/12
309
waxtep

Формально ответ подходит, но - нет :-)
Следует наверное добавить, что рядов в каждой грядке больше одного, как и растений в рядах.

 Профиль  
                  
 
 Re: Занимательная огородная задачка
Сообщение30.04.2018, 03:45 
Аватара пользователя


07/01/16
1612
Аязьма
Тогда $24^2+25^2=21^2+40\cdot(40-21)$
Это уже довольно большие грядки :-)

 Профиль  
                  
 
 Re: Занимательная огородная задачка
Сообщение30.04.2018, 12:57 


26/08/11
2111
Alex_J в сообщении #1308647 писал(а):
Вторая же могла бы тоже быть квадратной,
Тоесть,
waxtep в сообщении #1308686 писал(а):
$\cdots 40\cdot(40-21)$
не подходит.

Но подходит квадрат со стороной $F_n\cdot F_{n+3}$ и прямоугольник с размерами $F_{n+1}^2\times F_{n+2}^2$

$F_n$ - числа Фибоначчи.

 Профиль  
                  
 
 Re: Занимательная огородная задачка
Сообщение30.04.2018, 13:48 
Аватара пользователя


07/01/16
1612
Аязьма
Shadow в сообщении #1308734 писал(а):
Alex_J в сообщении #1308647

писал(а):
Вторая же могла бы тоже быть квадратной,
а, это условие я неправильно понял

 Профиль  
                  
 
 Re: Занимательная огородная задачка
Сообщение01.05.2018, 09:51 
Аватара пользователя


14/08/12
309
Пока правильного ответа нет. )

-- 01.05.2018, 10:53 --

Shadow в сообщении #1308734 писал(а):
Но подходит квадрат со стороной $F_n\cdot F_{n+3}$ и прямоугольник с размерами $F_{n+1}^2\times F_{n+2}^2$


Для некоторого $n$ - Ответ верный. )

 Профиль  
                  
 
 Re: Занимательная огородная задачка
Сообщение01.05.2018, 10:59 


26/08/11
2111
Хорошо, чем вам не устраивает (какое условие не удовлетворяет) квадрат со стороной $a$, и прямоугольник со сторонами $b,c$ и решения для $(a,b,c)$

$(5,4,9);(16,9,25);(39,25,64);(105,64,169)\cdots$

Какое из этих решений не верно и почему?

 Профиль  
                  
 
 Re: Занимательная огородная задачка
Сообщение01.05.2018, 15:55 
Аватара пользователя


14/08/12
309
Во-первых, вопрос был про число растений, а не про размеры грядок.

Грядки реальные, не выдуманные, ответ 5, 4, 9 подходит, если не учитывать опять же сам вопрос в задаче.

Остальные сочетания подходят чисто математически, и подошли бы, если бы вопрос был "все возможные варианты".

 Профиль  
                  
 
 Re: Занимательная огородная задачка
Сообщение01.05.2018, 18:01 


26/08/11
2111
Alex_J в сообщении #1309122 писал(а):
Во-первых, вопрос был про число растений, а не про размеры грядок.
Лень было искать в интернете формул для площади квадрата и прямоугольника.
Alex_J в сообщении #1309122 писал(а):
Грядки реальные, не выдуманные
Alex_J в сообщении #1309122 писал(а):
Остальные сочетания подходят чисто математически
К "сочетаниям" придираться не буду, значит, я не угадал задуманное число? Точнее угадал, но выписывая все подряд, а так нечестно?
Alex_J в сообщении #1309122 писал(а):
и подошли бы, если бы вопрос был "все возможные варианты".
Вы уверены?

 Профиль  
                  
 
 Re: Занимательная огородная задачка
Сообщение01.05.2018, 20:54 
Аватара пользователя


14/08/12
309
Shadow в сообщении #1309173 писал(а):
К "сочетаниям" придираться не буду, значит, я не угадал задуманное число? Точнее угадал, но выписывая все подряд, а так нечестно?

Типа :lol:

Shadow в сообщении #1309173 писал(а):
Лень было искать в интернете формул для площади квадрата и прямоугольника.

Они очень сложные...

 Профиль  
                  
 
 Re: Занимательная огородная задачка
Сообщение02.05.2018, 12:18 


26/08/11
2111
Alex_J в сообщении #1309122 писал(а):
и подошли бы, если бы вопрос был "все возможные варианты"
Стороны прямоугольника $(yu^2,yv^2)$, сторона квадрата $y(u^2-v^2)$.

Уравнение $y^2(u^2-v^2)^2+y^2u^2v^2=x^2+(x+1)^2\quad\eqno{(1)}$

Решения $y=1,\;u^2-v^2-uv=\pm 1$ будем называть тривиальными. Тривиальные решения: $y=1,u=F_{n+1},v=F_n$ (числа Фибоначчи).

Уравнение $\eqno{(1)}$ сводится к уравнению Пелля

$(2x+1)^2-2(u^4-u^2v^2+v^4)y^2=-1$

которое при для некоторых $u,v$ либо не имеет решений, либо решений бесконечно много. Но мы уж точно знаем, что при $u=F_{n+1},v=F_n$ есть тривиальное решение $y=1$, которое порождает бесконечную серию. Так что там далеко не все решения.

(Оффтоп)

Такое "палиндромное" решение $303^2+404\cdot 101=257^2+258^2$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 12 ] 

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: fiviol


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group