2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Черный ящик
Сообщение11.04.2018, 20:03 


20/09/09
2144
Уфа
Эта тема вроде бы относится к Computer Science, а не к Искусственному интеллекту?

 Профиль  
                  
 
 Re: Черный ящик
Сообщение11.04.2018, 20:53 
Аватара пользователя


13/08/13

4323
arseniiv в сообщении #1303280 писал(а):
А вот сможете ли вы найти для произвольных $n,i,o$ количество классов эквивалентности автоматов с $n$ состояниями (одно из которых маркировано — стартовое), $i$ входными символами и $o$ выходными?

Я тоже над этим думал, какую-нибудь зацепку?

-- 11.04.2018, 20:53 --

Rasool в сообщении #1303292 писал(а):
Эта тема вроде бы относится к Computer Science, а не к Искусственному интеллекту?

Тут все есть :-)

 Профиль  
                  
 
 Re: Черный ящик
Сообщение11.04.2018, 22:22 
Заслуженный участник


27/04/09
28128
Sicker в сообщении #1303310 писал(а):
Я тоже над этим думал, какую-нибудь зацепку?
Какую зацепку, это исследовательская задача. На самом деле я сам о ней пока всерьёз не думал.

 Профиль  
                  
 
 Re: Черный ящик
Сообщение11.04.2018, 22:33 
Заслуженный участник
Аватара пользователя


16/07/14
9737
Цюрих
Для $i = 1$ получается задача об ожерельях. Для большего - непонятно (там даже просто посчитать число сильно связных графов не так просто).

 Профиль  
                  
 
 Posted automatically
Сообщение12.04.2018, 00:20 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Искусственный интеллект и Машинное обучение» в форум «Computer Science»
Причина переноса: AI и ML, если тут и подразумевались, как-то испарились в процессе.

 Профиль  
                  
 
 Re: Черный ящик
Сообщение12.04.2018, 17:06 


27/02/09
253
Sicker в сообщении #1303061 писал(а):
Как по отклику на входной сигнал определить устройство черного ящика?
Вообще говоря - никак.
То есть, существуют чёрные ящики, удовлетворяющие условию задачи, устройство которых по отклику определить нельзя.

 Профиль  
                  
 
 Re: Черный ящик
Сообщение12.04.2018, 17:58 
Аватара пользователя


13/08/13

4323
guryev в сообщении #1303518 писал(а):
То есть, существуют чёрные ящики, удовлетворяющие условию задачи, устройство которых по отклику определить нельзя.

Докажите, т.к. я в начале темы привел тот способ.

 Профиль  
                  
 
 Re: Черный ящик
Сообщение12.04.2018, 18:50 


27/02/09
253
Sicker в сообщении #1303528 писал(а):
я в начале темы привел тот способ
Не привели:
Sicker в сообщении #1303061 писал(а):
те из них, которые дают такой же выход, что и наш исходный ящик, и будут его функциональными двойниками
- термина "функциональные двойники", в условии задачи нет.
Вместо этого стоит задача:
Sicker в сообщении #1303061 писал(а):
по отклику на входной сигнал определить устройство черного ящика
По условию "чёрный ящик" из задачи соответствует определению конечного автомата. Так вот, "определить устройство", то есть, построить автомат, изоморфный описанному в задаче, по отклику, вообще говоря, нельзя.

 Профиль  
                  
 
 Re: Черный ящик
Сообщение12.04.2018, 18:58 
Заслуженный участник
Аватара пользователя


16/07/14
9737
Цюрих
Если не требовать восстановить начальное состояние, то можно: пар (автомат, начальное состояние) конечно; если автоматы в двух таких парах неизоморфны, то, зная какое слово мы уже подали, можно подобрать слово, отличающее эти пары. В итоге у нас останутся только пары с изоморфными состояниями.
Начальное состояние восстановить нельзя: например если автомат по нулю всегда переходит в $0$ и выдает $0$, и мы первым делом подали на вход $0$, то мы уже не узнаем, в каком состоянии он был.

 Профиль  
                  
 
 Re: Черный ящик
Сообщение12.04.2018, 19:04 


27/02/09
253
Существуют неизоморфные автоматы, отклики которых всегда совпадают.

 Профиль  
                  
 
 Re: Черный ящик
Сообщение12.04.2018, 19:17 
Аватара пользователя


13/08/13

4323
guryev в сообщении #1303540 писал(а):
термина "функциональные двойники", в условии задачи нет.

Ну не так выразился.
guryev в сообщении #1303549 писал(а):
Существуют неизоморфные автоматы, отклики которых всегда совпадают.

Если отклики совпадают, то они изоморфны по определению.

 Профиль  
                  
 
 Re: Черный ящик
Сообщение12.04.2018, 19:36 


27/02/09
253
Sicker в сообщении #1303550 писал(а):
Если отклики совпадают, то они изоморфны по определению.
Нет, определение изоморфизма немного другое. :-)

 Профиль  
                  
 
 Re: Черный ящик
Сообщение12.04.2018, 20:20 
Заслуженный участник


27/04/09
28128
Sicker в сообщении #1303550 писал(а):
Если отклики совпадают, то они изоморфны по определению.
Конечно, нет. Классы эквивалентности по выдаче одинаковых строк при подаче одинаковых строк включают часто более одного автомата. В частности, если автомат выдаёт всегда один и тот же символ, его граф переходов может быть вообще каким угодно.

 Профиль  
                  
 
 Re: Черный ящик
Сообщение12.04.2018, 20:29 
Аватара пользователя


13/08/13

4323
arseniiv в сообщении #1303556 писал(а):
В частности, если автомат выдаёт всегда один и тот же символ, его граф переходов может быть вообще каким угодно.

Да ну,а какое тогда определение изоморфизма?

 Профиль  
                  
 
 Re: Черный ящик
Сообщение12.04.2018, 22:24 
Заслуженный участник


27/04/09
28128
Конечный автомат (в данном случае) задаётся тремя множествами $S,I,O$, начальным состоянием $s_0\in S$ и функцией переходов $m\colon S\times I\to S\times O$. Отсюда должно быть практически очевидно (потому что $(S,I,O,s,m)$ — это алгебраическая система, даром что немножечко обобщённая), что гомоморфизм — это тройка функций $f_X\colon X\to X'$ таких, что $f_S(s_0) = s'_0$ и $m(s_1,i) = (s_2,o)\Rightarrow m'(f_S(s_1),f_I(i)) = (f_S(s_2),f_O(o))$ (в интересном случае $I=I', O=O'$ всё становится проще, конечно). А изоморфизм — это всегда гомоморфизм, имеющий обратный гомоморфизм.

Вот я щас удивлюсь, если моё автоматически выведенное определение не совпадёт с используемым в литературе по КА.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 47 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Google Adsense [Bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group