2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Больше миллиона, меньше миллиона
Сообщение14.03.2018, 15:56 
Аватара пользователя


01/12/11

8634
У каждого натурального числа от $n+1$ до $n+1000$ выписывают все делители, не превосходящие 1000. Докажите, что для бесконечно многих натуральных $n$ сумма всех выписанных чисел больше миллиона, и для бесконечно многих - меньше.

 Профиль  
                  
 
 Re: Больше миллиона, меньше миллиона
Сообщение14.03.2018, 16:33 
Заслуженный участник
Аватара пользователя


16/07/14
9579
Цюрих
Если $n = k + 1000!$, то для любого $a$ у $n + a$ и $k + a$ одни и те же делители, не превосходящие $1000$. Т.е. если существует хотя бы одно число, для которого эта сумма меньше миллиона, то таких чисел бесконечно; аналогично для больше миллиона. То, что такие существуют, проверяется численно.

 Профиль  
                  
 
 Re: Больше миллиона, меньше миллиона
Сообщение14.03.2018, 17:47 
Аватара пользователя


01/12/11

8634
mihaild в сообщении #1297365 писал(а):
То, что такие существуют, проверяется численно.

Как-то долго в уме численно проверять. А правила олимпиады запрещают пользоваться вычислительной техникой.

 Профиль  
                  
 
 Re: Больше миллиона, меньше миллиона
Сообщение14.03.2018, 20:34 
Аватара пользователя


07/01/16
1654
Аязьма
Ktina в сообщении #1297392 писал(а):
Как-то долго в уме численно проверять.
для "больше миллиона" можно взять любое $n=x\cdot1000!-1$, следуя рассуждениям mihaild. А вот для "меньше миллиона", хм-хм...

-- 14.03.2018, 20:49 --

...а для "меньше миллиона" любое $n=x\cdot(1000!)^2$

 Профиль  
                  
 
 Re: Больше миллиона, меньше миллиона
Сообщение14.03.2018, 23:29 
Аватара пользователя


01/12/11

8634
mihaild
waxtep
Большое спасибо!

 Профиль  
                  
 
 Re: Больше миллиона, меньше миллиона
Сообщение15.03.2018, 09:53 


26/08/11
2149
Сумма меняется от

$\displaystyle\sum\limits_{d=1}^{1000} d\cdot\left\lfloor{\dfrac{1000}{d}}\right\rfloor=823081
$ при $n\equiv 0 \pmod {\operatorname{lcm}(1\cdots 1000)}$

до

$\displaystyle\sum\limits_{d=1}^{1000} d\cdot\left\lceil{\dfrac{1000}{d}}\right\rceil=1321241
$ при $n\equiv -1 \pmod {\operatorname{lcm}(1\cdots 1000)}$

Каждый делитель $d$ встречается $\left\lceil{\dfrac{1000}{d}}\right\rceil$ раз, если $(n+1)\equiv 0 \pmod d$ или $(n+1) \pmod d>-1000 \pmod d$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group