2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Издержки алгоритмизации
Сообщение20.12.2017, 05:32 
Аватара пользователя


21/09/12

1871
В пособии «ЕГЭ. Высший балл. Математика. Профильный уровень», 2017, автор Ерина Т.М. упорно внедряет некие таблицы с довольно мутным наполнением: оно меняется от задачи к задаче.
Вот одна из них:
Изображение
Изображение
Изображение
Между тем, задача решается в уме.
Перейдём в систему отсчёта пешехода. Когда мотоциклист проехал 9 км, велосипедист только 3. Их скорости 1:3. Дальше мотоциклист догонял велосипедиста:
$3+v_{w}t= 3v_{w}t$, откуда получаем, что велосипедист успел проехать $3/2=1,5$ км. Да между ними изначально было 3 км: $3+1,5=4,5$ км. – А пешеход-то стои’т!
Принято ругать колмогоровский учебник геометрии 1979 года за громоздкую алгоритмизацию. Как видим, её издержки проявляются и в школьной алгебре.

 Профиль  
                  
 
 Re: Издержки алгоритмизации
Сообщение20.12.2017, 13:32 
Заслуженный участник
Аватара пользователя


01/08/06
3158
Уфа
Ваше решение — это красивый приём, можно сказать, искусство, которое годится для этой задачи, но для другой придётся придумывать другой красивый приём. Такому невозможно научить.
А приведённое в пособии — это, так сказать, квадратно-гнездовой метод, который выглядит некрасиво, но тупо работает на целом классе задач, и которому можно научить любого сержанта со средним образованием :-)

 Профиль  
                  
 
 Re: Издержки алгоритмизации
Сообщение20.12.2017, 14:03 
Аватара пользователя


21/09/12

1871
worm2
Математика с "приёмами" очень полезна, особенно в школьной геометрии, на 90% состоящей из них, - в классическом, конечно, её виде, кисилёвском.
Ну и не согласен с "только для этой задачи". Стрельба из пушки по летящему по параболе снаряду - это классика для этого метода, к тому же позволяющее проникнуться физикой процесса.
А квадратно-гнездовой всегда отработать можно.

 Профиль  
                  
 
 Re: Издержки алгоритмизации
Сообщение20.12.2017, 19:32 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
atlakatl
Ваш прием достаточно стандартен в физике (выбор подходящей системы отсчета), но для математики он наверное нестандартен. Так что тут у учащихся с "физическим" уклоном будет преимущество перед "чистым математиком".

 Профиль  
                  
 
 Re: Издержки алгоритмизации
Сообщение21.12.2017, 00:05 
Заслуженный участник


27/04/09
28128
Если уж эта тема для ворчания, то если делать воистину механически, таблицы тоже не нужны. Для положения всех троих справедливы уравнения $x_i = x_{0i} + v_it$, и профильный уровень должен справиться со всем, что дальше потребуется, никаких флажков и берущихся изниоткуда дробей. :roll: И вообще, перемещение обозначается маленькой $s$, а $S$ — это площадь.

atlakatl в сообщении #1276669 писал(а):
с довольно мутным наполнением: оно меняется от задачи к задаче
Чтобы показать, что оно меняется, нужна как минимум ещё одна задача. Через одну точку и прямой не проведёшь.

 Профиль  
                  
 
 Re: Издержки алгоритмизации
Сообщение21.12.2017, 00:35 


07/06/17
1282
worm2 в сообщении #1276721 писал(а):
Ваше решение — это красивый приём, можно сказать, искусство, которое годится для этой задачи, но для другой придётся придумывать другой красивый приём. Такому невозможно научить.

Не соглашусь. В книжке Арнольда-деда приводится без решения задача:
Цитата:
Я грёб вверх по течению и, проезжая под мостом, потерял шляпу. Через 10 мин я это заметил и, повернув и гребя с той же силой, нагнал шляпу в 1 км ниже моста. Какова скорость течения реки?

Не пробовал квадратно-гнездовым, но принятием шляпы за систему отсчета она решается влёт. Введением неизвестных - с трудом.

 Профиль  
                  
 
 Re: Издержки алгоритмизации
Сообщение21.12.2017, 08:07 
Аватара пользователя


21/09/12

1871
arseniiv в сообщении #1276859 писал(а):
Чтобы показать, что оно меняется, нужна как минимум ещё одна задача. Через одну точку и прямой не проведёшь.

Вот предыдущие решения:
Изображение
Проблема в том, что решающий привязан к первоначальному выбору неизвестных. - И вынужден убедиться в этом только после построения и анализа таблицы.
Обычное же решение клеточками не связано. Решай-пробуй как умеешь.

 Профиль  
                  
 
 Re: Издержки алгоритмизации
Сообщение21.12.2017, 22:13 
Заслуженный участник


02/08/11
7127
worm2 в сообщении #1276721 писал(а):
и которому можно научить любого сержанта со средним образованием :-)
Видел я эти таблицы (видимо, они сейчас в моде). Я не знаю как сержанты, но я так и не смог понять как ими пользоваться.

 Профиль  
                  
 
 Re: Издержки алгоритмизации
Сообщение12.01.2018, 21:53 


06/08/13
151
Таблицы хороши в более-менее стандартных задачах, где известны какие-нибудь величины: расстояние, время или скорость. Приведённая задача очевидно "нестандартная", олимпиадного уровня 8 - 9 класс. Я сомневаюсь, что она вообще ЕГЭшная: там задачи, как правило, стандартные (первая часть всё-таки).
Есть подозрение, что она создавалась наоборот: от решения, предложенного atlakatl, к условию.

 Профиль  
                  
 
 Re: Издержки алгоритмизации
Сообщение13.01.2018, 14:43 
Аватара пользователя


14/02/12

841
Лорд Амбера
Еще есть мутная вещь - пропорции. Непонятно, зачем им вообще в школе учат, и встречал переучившихся очевидно людей, возможно бывших круглых отличниц, которые простую бытовую задачку которая решается в уме умножением и делением, решают путем нудного составления пропорции на бумажке. Но уверен, что так им легче - все однотипные задачи будут решены. Тоже ведь алгоритм.

 Профиль  
                  
 
 Re: Издержки алгоритмизации
Сообщение13.01.2018, 15:20 
Аватара пользователя


21/09/12

1871
Korvin
В уме произведение и деление уже двузначных чисел не проведёшь. Ну и без знания правила креста разобраться, что из трёх чисел перемножать, а что делить, сложновато.
Про бывших круглых отличниц не ведаю, но большинство моих коллег с трудом понимают, как рассчитать свои суточные за 30 дней, если известна их сумма за 22 дня.

 Профиль  
                  
 
 Re: Издержки алгоритмизации
Сообщение13.01.2018, 15:29 
Заслуженный участник


20/08/14
12055
Россия, Москва

(Оффтоп)

atlakatl в сообщении #1283768 писал(а):
как рассчитать свои суточные за 30 дней, если известна их сумма за 22 дня.
Интеграл взять? :mrgreen: Уж это-то они наверняка умеют лучше составления пропорций.

Добавлю, польза пропорций в том, что они создают как бы мостик от вычислений полностью определённых выражений к уравнениям с неизвестным. Ну как мне смутно помнится из школы.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 12 ] 

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: drzewo


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group