Для массивных частиц:
...
- в
- области есть скорость по линейкам и часам локального наблюдателя на
Как из первого уравнения следует второе, для скорости? Кроме того, это второе уравнение опять-таки содержит три переменные - r, t и скорость. Другими словами, чтобы найти r(t), нужно знать значение скорости. Но она, как можно догадаться, тоже является функцией от r. Каким образом из этого уравнения можно получить
?
Для фотонов:
Здесь выкладки у вас, у Новикова, да и у меня, совпадают. Но после интегрирования уравнения движения выглядят иначе, чем у Мизнера.
У Новикова, собственно, это все расписано.
Для фотона - да. Но для частиц и тахионов - только схематично. До четких интегралов дело не дошло. Есть лишь вывод о вечном падении.
Для тахионов:
Параллельный перенос вектора касательной так же переводит его сам в себя, только он тут пространственноподобный. Нужно взять какую-нибудь параметризацию и расписать.
Не буду лукавить, мало что понял из сказанного вами. Видимо, расписать нужно, но меня интересует уже расписанное, в частности, Мизнером.
Решения Новикова отличаются от более полных решений Мизнера. Как Мизнер (с соавторами) получил свои уравнения, например, для частицы по координатным часам (удаленный наблюдатель)?
Можно конкретнее?
Собственно, с этого тема и начиналась. У Мизнера (с соавторами) в книге приведены уравнения движения, по которым любой желающий может построить те самые графики - геодезические, изображенные на рисунке (первое сообщение). Ни у Новикова, ни у многих других авторов таких уравнений, как у Мизнера, я не встретил. Сами уравнения как таковые меня не интересуют - интересует и очень сильно их история, как они получены. Приведенное вами уравнение для скорости частицы, проинтегрировать я не могу - неизвестна функция скорости. Кроме того, что-то сильно я сомневаюсь, что интеграл совпадет с решением Мизнера. Вопрос по-прежнему открыт: нужны выкладки Мизнера. Ну, или, на худой конец - что-то подобное, выведение уравнений движения для массивной частицы и тахиона.