Хорошо, а если так: берём счётное множество колод карт (стандартных, по 54 листа каждая), перетасовываем всё множество и вытягиваем первую попавшуюся карту. Какова вероятность, что это туз? Или в такой постановке задачи опять что-то не так?
Конечно не так, потому что не задана мера на множестве карт после тасовки. В результате задача решения не имеет, поскольку её условие не содержит необходимой для решения информации.
Такая постановка может иметь место. Ничто не мешает вводить меру на бесконечных множествах. Причем сама мера при этом будет конечной. Например, множество всех тузов в вашем примере будет иметь меру 1/54. Как и множество дам-с.
Ну с чего бы это. Это зависит от того, какая мера получится после тасовки карт.
Вообще говоря, ТС ничего не говорил об упорядочении колод. Можно их взять в порядке целых чисел и перемешать. Тогда вопрос о карте из "первой колоды" нуждается в пояснении.
Я хотел бы обратить внимание на то, что понятие "перемешивание множества" для произвольного множества самого по себе не имеет смысла, поскольку говорить о перемешивании можно только если есть какое-то средство для сравнения перемешанного множества с не перемешанным.
В обсуждаемом случае таким технически удобным средством может быть нумерация карт натуральными числами. Удобно считать, что колоды у нас перенумерованы натуральными числами, и что, глядя на карту, мы можем определить, из какой колоды она взята. В конце концов, и колоды, и карты являются физически различимыми объектами, даже если они "одинаковые". Тогда вопрос о карте из первой колоде будет вполне осмысленным.
В таком случае мы можем говорить не о картах, а об их номерах, и рассматривать вероятностное пространство
. При таком подходе тасовка — это взаимно однозначное отображение
, которое порождает новое вероятностное пространство
, где новая вероятность определяется формулой
для всех
.
Конечно, можно обойтись и без нумерации, определяя тасовку как взаимно однозначное отображение множества карт на себя и переопределяя меру соответствующим образом.
Прошу прощения, а если я поинтересуюсь, на основании чего для счётно-бесконечного множества колод получается такой же результат, как для конечного
Да не получается. Просто отвечающие не обдумали этот вопрос и ответили "по инерции". Это иногда с кем угодно случается. А в вашей постановке ваша задача вообще смысла не имеет.
Так уж вышло, что я считаю Харди бóльшим авторитетом, чем вы, в вопросе о том, как надо и как не надо заниматься математикой.
Да на здоровье. Это его личное мнение. Нравится оно Вам — вот и придерживайтесь его, а другим не указывайте, чем и как заниматься.
Ну вот, пока писáл — и забанить успели.