У Шахпаронова в "Межмолекулярных силах" сказано, что в 30-х годах все наконец поняли, что универсального уравнения создать нельзя и бросили поиски. У меня вопрос, а почему нельзя-то?
Предположу просто потому, что универсальный газовый закон выводился для макросостояния идеального газа. А межмолекулярные силы действуют на малых расстояниях. Это то же самое, что соединить скажем ньютонову механику с квантовой. Пока тела большие, мозно пренебречь квантовыми эффектами на границе. Но при уменьшении размеров тел мы подходим к порогу, когда требуется более принимать во внимание квантовую механику.
Физика вообще так устроена, что ксть макро-модели и микромодели, которые в одной формуле не стыкуются, потому что оперируют различными масштабами.
То же самое происходит не только в механике и термодинамике. Еще и в электромагнетизме, когда в больших масштабах мы пользуемся волновыми уравнениями Максвелла, а в совсем мелких единичных квантовой электродинамикой. Кстати и к оптике это тоже относится. В каких-то случаях нам достаточно приближения геометрической оптики, а спускаемся на мелкий уровень, приходится учитывать волновой характер - интерференцию, дифракцию и пр. Волновые эффекты.
Да ну. Почему нельзя то? А чем же тогда квантовая химия занимается? Ведь они и для межмолекулярных взаимодействий делают расчёты, а межмолекуляр это прямая дорога к макроскопическим величинам. И наоборот тоже можно. Например, из растворимости циклогексана в воде и поверхностной энергии, используя только распределение Больцмана, можно вычислить размер молекулы циклогексана с ошибкой всего в 3%. Так что и макроскопические величины могут давать неплохие результаты.
AlexFr
Насколько я помню, никто ничего не бросил. Поиски продолжаются. И не только уравнений состояния газов, но и жидкостей, и кроссоверных уравнений (то есть описывающих оба состояния плюс фазовый переход).
Ну, правда, не совсем уж универсальных уравнений, потому что вещества всё-таки очень разные. Обычно ограничиваются моделью простой жидкости. Там предполагается, что взаимодействие между двумя частицами зависит только от мгновенных положений центров масс частиц, и ещё что-то такое (читал давно и уже забыл). Модель простой жидкости неплохо описывает, например, некоторые жидкие углеводороды. Там нет водородных связей и прочей гадости.
Успехов, тем не менее ... как бы это сказать... немного.
Литература, в которой кое-что есть по этому вопросу:
Крокстон К. Физика жидкого состояния: статистическое введение – М.: Мир, 1978
Физика простых жидкостей. Сб. статей под ред. Темперли Г. – М.: Мир,1971
Фишер И. З. Статистическая теория жидкостей. – М.: Физматгиз, 1961.
Также попадалась очень интересная диссертация.
Неручев Ю. А. Ультразвуковые исследования равновесных свойств органических жидкостей. Дисс. д. ф.-м. наук. – Курск, 2005
Там автор записал кроссоверное уравнение, которое хорошо работает (если верить его экспериментам с гептаном и толуолом), в том числе и в критическом состоянии (sic!).
Ну жидкости, это да, поле не паханое, сам теорией жидкого состояния в будущем заниматься хочу. А вот по газам я особо ничего не нашёл, только уравнение Вукаловича и Новикова 1939 года, не подскажете, в чём его неидеальность? Когда оно перестаёт работать?
AlexFr
Такого, чтоб для всех годилось, нет.
Но для некоторых классов веществ (скажем, метан-углекислый газ-азот и т.п. неполярные) весьма прилично работает модифицированный ван дер Ваальс.
Когда-нибудь и для всех найдём. Главное отличие полярных диполей от неполярных это наличие у них, кроме электронной, ориентационной поляризуемости. Это учесть легко. При больших давлениях можно попробовать приплести потенциал Юкавы. А чтобы учесть, что некоторые молекулы имеют немаленькие размеры, как вот хотя бы тетрахлорметан, можно всегда решать в общем виде, брать двойной интеграл от потенциала как функции расстояния. Да, расчётов будет выше крыши, но квантовый компьютер не за горами.
У Шахпаронова в "Межмолекулярных силах" сказано, что в 30-х годах все наконец поняли, что универсального уравнения создать нельзя и бросили поиски. У меня вопрос, а почему нельзя-то?
А точно ли сказано именно это? Я попытался поискать подобную цитату, найти ее мне не удалось.
А так... уравнение, описывающее с достаточной степенью точности любые уже имеющиеся экспериментальные данные, очевидно, написать можно. Только оно будет громадным и никому не нужным. А относительно простые и работоспособные для частных случаев уравнения состояния и искали, и находили, и этот процесс продолжается и сейчас.
Это не цитата, привёл фразу почти дословно, но смысл тот же, никакого другого скрытого смысла там не было. Искать не трудитесь, в свободном доступе этого труда нету, я сам брал в Питерской национальной библиотеке, где книг куча, но на дом не дают.