2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5  След.
 
 Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение03.12.2017, 00:04 
Для физика самое главное понять - откуда что взялось и как это работает.Поэтому теорема Ферма на младших курсах физфака стояла в одном ряду с такими проблемами,требующими срочного решения,как общая теория поля и управляемый термоядерный синтез.Уже тогда,при наших бурных обсуждениях в стенах университетского общежития,робко звучало мнение,что, возможно, в ВТФ сформулировано свойство самих чисел,которое,как у всего "сущего в мире",определяется их сложной внутренней структурой.Это мнение с негодованием дружно отвергалось в пользу различных модификаций уравнения Ферма.Что поделаешь-мы были молоды и нам хотелось доказать всё и сразу.Это сейчас ,когда прошли годы,понимаешь,что ВТФ-это не короткий рассказ с невероятно замысловатым сюжетом,а ,скорее,увлекательный роман,где главным героем является не уравнение Ферма,а сами числа.
Как известно,в физике отрицательный результат не является поводом для огорчения,типа "Обидно,да!".Иногда он важнее положительного и является началом прорыва в неизведанные ещё области.Классический пример-опыт Майкельсона.
О чём нам говорит неудача с доказательством ВТФ для соседних кубов?Основной закон сложения арифметических прогрессий и его следствия,которые несомненно действуют внутри кубов,не являются определяющими при разложении куба на составные части.Тогда какой закон управляет этим? Вопрос...
Как физик,я привык задавать вопросы природе и и на её ответах строить уже свои теории.Почему бы сейчас не поступить так же? Мы имеем интереснейший объект-кубы натуральных чисел.Мы знаем их внутреннюю структуру.Почему бы не попробовать разложить кубы нечётных чисел по порядку на соседние кубы? Для начала,на самое простое -на соседний куб и единичное приращение.Сделать такую таблицу:

$  ..1^3   =  (2\cdot 0+1)^3  =  1   $
$  ..3^3   =  (2\cdot 1+1)^3  =  2^3 +    $
$  ..5^3   =  (2\cdot 2+1)^3  =  4^3 +    $
$  ..7^3   =  (2\cdot 3+1)^3  =  6^3 +    $
$  ..9^3   =  (2\cdot 4+1)^3  =  8^3 +    $
$  11^3 =  (2\cdot 5+1)^3  =  10^3 +    $
$  13^3 =  (2\cdot 6+1)^3  =  12^3 +    $
$  15^3 =  (2\cdot 7+1)^3  =  14^3 +    $
$  17^3 =  (2\cdot 8+1)^3  =  16^3 +    $
$  19^3 =  (2\cdot 9+1)^3  =  18^3 +    $
$  21^3 =  (2\cdot 10+1)^3=  20^3 +    $
$  23^3 =  (2\cdot 11+1)^3  =  22^3 +    $
$  25^3 =  (2\cdot 12+1)^3  =  24^3 +    $
$  27^3 =  (2\cdot 13+1)^3  =  26^3 +    $
$  29^3 =  (2\cdot 14+1)^3  =  28^3 +    $
$  31^3 =  (2\cdot 15+1)^3  =  30^3 +    $
$  33^3 =  (2\cdot 16+1)^3  =  32^3 +    $
$  35^3 =  (2\cdot 17+1)^3  =  34^3 +    $
$  37^3 =  (2\cdot 18+1)^3  =  36^3 +    $
$  39^3 =  (2\cdot 19+1)^3  =  38^3 +    $
$  41^3 =  (2\cdot 20+1)^3  =  40^3 +    $

Может быть,в этих разложениях имеются какие то интересные закономерности,а может быть,они совершенно хаотичны и ничего интересного нам не скажут.
Ведь этого никто не делал.Или я ошибаюсь?Если кто то знает - может заполнить эту таблицу или дать ссылку.Было бы очень интересно сравнить.

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение03.12.2017, 00:10 
Аватара пользователя
Только хотел сказать "да это ж как бином Ньютона", но увидев
PhisicBGA в сообщении #1271220 писал(а):
ведь этого никто не делал

понял, что это бесполезно...

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение03.12.2017, 00:48 
Аватара пользователя
PhisicBGA в сообщении #1271220 писал(а):
Ведь этого никто не делал.Или я ошибаюсь?
Ошибаетесь. Ответ на ваш вопрос есть в школьных учебниках по алгебре за примерно 7 или 8 класс.

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение03.12.2017, 00:52 
Аватара пользователя

(Оффтоп)

PhisicBGA в сообщении #1271220 писал(а):
теорема Ферма на младших курсах физфака стояла в одном ряду с такими проблемами,требующими срочного решения,как общая теория поля и управляемый термоядерный синтез.Уже тогда,при наших бурных обсуждениях в стенах университетского общежития,робко звучало мнение,что, возможно, в ВТФ сформулировано свойство самих чисел,которое,как у всего "сущего в мире",определяется их сложной внутренней структурой.Это мнение с негодованием дружно отвергалось в пользу различных модификаций уравнения Ферма.

Самое интересное, о каком физфаке здесь идет речь? :shock: Физфак в палате № 6?

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение03.12.2017, 19:39 
То, что задача простая - это понятно.Возможно именно поэтому никто этого не делал.Вопрос не в этом.Вопрос в том,имеются ли в этих разложениях какие то интересные закономерности?Судите сами.


$  ..1^3   =  (2\cdot 0+1)^3  =  1 \qquad  \qquad\qquad  \qquad\qquad \qquad \qquad  \qquad (1) $
$  ..3^3   =  (2\cdot 1+1)^3  =  2^3 + 1 + 6\cdot 3 + 0   $
$  ..5^3   =  (2\cdot 2+1)^3  =  4^3 + 3^3 +6\cdot 6 - 2  $
$  ..7^3   =  (2\cdot 3+1)^3  =  6^3 +  5^3 +6\cdot 1 - 4  $
$  ..9^3   =  (2\cdot 4+1)^3  =  8^3 +   5^3 + 6\cdot16 - 4  \qquad \qquad  \qquad (8^3+6^3+1)$
$  11^3 =  (2\cdot 5+1)^3  =  10^3 +   6^3 +6\cdot 20 - 5 $
$  13^3 =  (2\cdot 6+1)^3  =  12^3 +  7^3 + 6\cdot 22 - 6  \qquad  \qquad (12^3+7^3+5^3+1)$
$  15^3 =  (2\cdot 7+1)^3  =  14^3 +  8^3 + 6\cdot 21 - 7  \qquad  \qquad (14^3+7^3+6^3+4^3+2^3)$
$  17^3 =  (2\cdot 8+1)^3  =  16^3 +   9^3 + 6\cdot 16 - 8 $
$  19^3 =  (2\cdot 9+1)^3  =  18^3 +    10^3 + 6\cdot 6 - 9   \qquad \qquad  \qquad(18^3+10^3+3^3)$
$  21^3 =  (2\cdot 10+1)^3=  20^3 +    10^3 + 6\cdot 45 - 9   $
$  23^3 =  (2\cdot 11+1)^3  =  22^3 +   11^3 + 6 \cdot 33 - 10 $
$  25^3 =  (2\cdot 12+1)^3  =  24^3 +   12^3 + 6\cdot 14 - 11  \qquad  \qquad( 24^3+12^3+4^3+1)$
$  27^3 =  (2\cdot 13+1)^3  =  26^3 +    12^3 + 6\cdot 65 - 11  $
$  29^3 =  (2\cdot 14+1)^3  =  28^3 +   13^3 + 6\cdot 42 - 12  $
$  31^3 =  (2\cdot 15+1)^3  =  30^3 +   14^3 + 6\cdot 14 - 13 $
$  33^3 =  (2\cdot 16+1)^3  =  32^3 +    14^3 + 6\cdot 73 - 13 $
$  35^3 =  (2\cdot 17+1)^3  =  34^3 +  15^3 + 6\cdot 35 -  14       \qquad(34^3+15^3+4^3+2^3-1)$
$  37^3 =  (2\cdot 18+1)^3  =  36^3 + 15^3 + 6\cdot 106 - 14   $
$  39^3 =  (2\cdot 19+1)^3  =  38^3 + 16^3 + 6\cdot 61 - 15  \qquad \qquad (38^3+16^3+7^3+2^3)$
$  41^3 =  (2\cdot 20+1)^3  =  40^3 + 16^3 + 6 \cdot 140-15   \qquad \qquad (40^3+17^3+2^3)$

Как видно из таблицы, разложение не хаотичное,а имеет определённые закономерности:
1.Последний член разложения всегда равен по абсолютной величине разности раскладываемого числа и суммы
получаемых при разложении кубов.
2.Максимальное увеличение младшего куба в разложении не превышает 1.
3.С увеличением основания раскладываемого куба младший куб разложений начинает повторяться у соседних раскладываемых кубов,но не больше одного раза.
4.Все разложения кубов конечны т.е. остаток во всех разложениях всегда меньше единичного приращения младшего куба.
5.Около половины разложений представимы в виде суммы,а в общем случае-в виде суперпозиции,трёх и более кубов натуральных чисел.Результат интересный и неожиданный в количественном плане.Что это:случайность или результат действия того неведомого нам закона,что отвечает за разложения кубов?
В любом случае,это простейшее разложение на соседний куб и единичное приращение показало ,что кубы натуральных чисел имеют сложную и регулярную внутреннюю структуру.А что же может дать нам более сложное разложение-на сумму соседних кубов?

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение03.12.2017, 19:53 
Аватара пользователя
PhisicBGA в сообщении #1271524 писал(а):
разложение не хаотичное,а имеет определённые закономерности

На мой вкус, закономерностей здесь не больше, чем в форме облаков: тоже, знаете ли, весьма интересные фигуры встречаются!
Во-первых, для многих строк у вас никаких представлений нет, причем такие строки распределены в списке неравномерно.
Во-вторых, число слагаемых меняется от 3 до 5 (причем допускаются и разности). А для бОльших $n$ появятся и 6 и 7 и т.д. слагаемых...

Так можно много всяких примеров понаписать! Это называется "подгонка", а не закономерность.

-- 03.12.2017, 19:55 --

PhisicBGA в сообщении #1271524 писал(а):
в виде суммы,а в общем случае-в виде суперпозиции,трёх и более кубов натуральных чисел

Что такое "суперпозиция кубов"?

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение03.12.2017, 20:12 
Аватара пользователя
PhisicBGA
Насчёт никто не пробовал.

Если Вы продолжите свои наблюдения, то увидите, что начиная с какого-то числа все числа можно записать в виде суммы кубов четырёх неотрицательных чисел. Те, кто делали это до Вас, нашли такую закономерность: до числа 7 373 170 279 850 всё пляшет вкривь и вкось -- то нужно 9 кубов, то достаточно одного. А вот после этого всё становится проще: всегда хватает не больше 4 кубов. Попытайтесь проверить -- вдруг они чего-то пропустили.

А с рациональными числами как красиво! Любое рациональное число можно представить в виде суммы трёх кубов рациональных чисел (можно отрицательные). Поиграйтесь с этим тоже -- это должно быть интереснее.

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение04.12.2017, 21:12 
[quote ="provincialka"]Что такое "суперпозиция кубов"?[/quote]

Суперпозиция кубов это сумма положительных и отрицательных кубов.Представление куба в виде суперпозиции кубов значит,что его можно представить в виде суммы положительных и отрицательных кубов.
Если $25^3$ представимо в виде суммы только положительных кубов-$$25^3=24^3+12^3+4^3+2^3+1$$ (в таблице пропущено $2^3$ и я спешу исправить это здесь),то $35^3$ представимо в виде суммы положительных и отрицательных кубов-
$$35^3=34^3+15^3+5^3+4^3+2^3-1$$ А,например, $123^3$ представимо следующей суперпозицией кубов-$$123^3=93^3+92^3+62^3+61^3+31^3+32^3-63^3+1$$
А $221^3$ представимо такой суперпозицией кубов-$$221^3=165^3+166^3+110^3+111^3+55^3+54^3-109^3-1$$
Просьба к Вам - ,если Вас не затруднит,проверьте,пожалуйста,выкладки.Вдруг я что то пропустил:"подгонка" ведь.

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение04.12.2017, 23:00 
Аватара пользователя
Не.. проверять не буду, лень... А главное, непонятно -- зачем?

Насчет "суперпозиции"... ну, дело ваше, -- изобретать термины... Но вообще-то сумму/разность называют иногда "алгебраическая сумма". Или просто сумма, если считать, что $-(1^3)=(-1)^3$ и допустить в качестве оснований отрицательные числа.
А термин "суперпозиция" уже занят, и довольно разнообразно! К математике больше подходит первый из указанных в ссылке смыслов, композиция функций.

В этом смысле суперпозиция кубов -- это девятая степень.

Так что, если уж вводите собственные понятия, то давайте им строгое определение.

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение05.12.2017, 01:30 
Аватара пользователя
PhisicBGA, Вы такое название — проблема Варинга — когда-нибудь слышали? Полюбопытствуйте, там много интересного узнаете.

PhisicBGA в сообщении #1272031 писал(а):
Представление куба в виде суперпозиции кубов значит,что его можно представить в виде суммы положительных и отрицательных кубов.
А зачем отрицательные? Прекрасно можно обойтись только положительными. Любое натуральное число можно представить суммой не более $9$ кубов натуральных чисел.
Рассмотрим ваши примеры.
$25^3=22^3+17^3+4^3$

$35^3=34^3+12^3+11^3+8^3=30^3+25^3+5^3+5^3$

$123^3=120^3+51^3+6^3=118^3+51^3+44^3=99^3+96^3+18^3$

$221^3=216^3+71^3+71^3+7^3=210^3+101^3+74^3+46^3=$
$=205^3+126^3+56^3+14^3=204^3+119^3+85^3+17^3=189^3+145^3+86^3+71^3=$
$=186^3+131^3+123^3+63^3=180^3+149^3+102^3+84^3=$
$=170^3+153^3+119^3+85^3=168^3+157^3+128^3+44^3$

Как видите, представления гораздо короче ваших, не содержат отрицательных чисел, и для больших чисел получается много представлений. Причём, я привёл только представления с наименьшим числом слагаемых, содержащие более одного слагаемого. Впрочем, Вы ведь допустили представление $1^3=1^3$ (с одним слагаемым).

Пример от меня для куба чётного числа.
$222^3=216^3+94^3+32^3=185^3+148^3+111^3$

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение05.12.2017, 02:22 
Аватара пользователя
grizzly в сообщении #1271539 писал(а):
Те, кто делали это до Вас, нашли такую закономерность:..

А не можете дать ссылки? На тех, кто делал «до нас» :wink:

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение05.12.2017, 11:26 
PhisicBGA в сообщении #1271524 писал(а):
Что это:случайность или результат действия того неведомого нам закона,что отвечает за разложения кубов?

PhisicBGA
Простейшая формула которая позволяет представить куб числа кратного 6 в виде алгебраической суммы четырёх целых кубов записывается как:
$$(x+y+z)^3-x^3-y^3-z^3=3(x+y)(x+z)(y+z)$$ далее выбираем какое либо число кратное 6, куб которого равен правой части, раскладываем его на три сомножителя:
$d_1= 3(x+y)$
$d_2=(z+x)$
$d_3=(z+y)$
таких что $d_1d_2d_3=(6N)^3$
И решаем систему из трёх уравнений с тремя неизвестными
Получим: $$25^3=7^3+9^3+9^3+24^3$$
$$35^3=24^3-13^3+29^3+19^3$$
$$123^3=60^3+113^3+87^3-77^3$$
и.т.д.
Число способов представления числа $(6N)^3$ в виде суммы четырёх целых кубов (при помощи этой формулы) будет определятся числом способов разложения числа $(6N)^3$ на три сомножителя.
Но есть и другие способы суперпозиции куба из 4-х кубов, возможно их конечное число не проверял)

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение05.12.2017, 11:34 
ishhan в сообщении #1272175 писал(а):
куб числа кратного 6

Долго думал в каком месте числа $25^3$ и $35^3$ и $123^3$ кратны $6$ ... Так и не придумал.

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение05.12.2017, 11:42 
Dmitriy40
А теперь:$$24^3=25^3-7^3-9^3-9^3$$
итд
Причём в такой записи алгебраическая сумма оснований 4-х кубов будет равна нулю.
Пардон, слегка запутал всех)

 
 
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение05.12.2017, 11:44 
Аватара пользователя
pcyanide в сообщении #1272120 писал(а):
А не можете дать ссылки? На тех, кто делал «до нас»
Очень много. Ключевые слова уже упоминались -- проблема Варинга. Она изучалась вдоль и поперёк и там действительно много интересных вещей можно посмотреть даже на уровне понимания школьной математики (доказательства не будут понятны, но результаты будут выглядеть завораживающе). Для примера, приведу этот обзор.

 
 
 [ Сообщений: 75 ]  На страницу 1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group