2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 7, 8, 9, 10, 11  След.
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение26.11.2017, 16:43 
Заслуженный участник
Аватара пользователя


18/12/07
762
Vadim44 в сообщении #1269226 писал(а):
Я указал ему на ошибку в применении метода, пусть сам решает
надо учитывать мое замечание или нет, это его право.

Не верно, что "указал".
Было сказано:

Vadim44 в сообщении #1269190 писал(а):
Вы ввели в функцию новую величину 1, а следовало
ввести в функцию новую переменную $ c$

без всякого обоснования, почему "следовало"

Не забудьте про функцию $\[z = \sqrt[n]{{xy}}\]$ :D

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение26.11.2017, 16:47 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Vadim44 Господи! Ну с какой стати "переменную"?
Посмотрите второй его контрпример, там никаких единиц нет, ничего, кроме $x$ и $y$.

Все. Я умываю руки. Кажется, это безнадежный случай.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение26.11.2017, 16:50 


05/11/17

53
Гоподин Коровьев !
Это Вы приводите контрпример, а не я.
Поэтому это Ваша обязанность провести все выкладки в контрпримере.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение26.11.2017, 17:09 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Господа! Не пора ли заканчивать? Уже пошли претензии к собеседникам.

Контрпример участника Коровьев вполне прозрачен и не требует никаких обоснований.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение26.11.2017, 17:41 
Заслуженный участник
Аватара пользователя


18/12/07
762
Ну, мне не трудно привести доказательство. Бери да вставляй!

Уравнение
$\ xy=z^n. \ (1)$
не имеет решений в целых числах

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ
Будем натуральные числа, которые удовлетворяют уравнению (1),
называть корнями уравнения
$\ xy=z^n. \ (1)$
Рассмотрим функцию переменных $ x $ , $ y $ , $ n $ и $ a $ .
$ F(x,y,n,a)=\sin^2(\pi a z)\ +\ \sin^2(\pi a x)+\sin^2(\pi a y)+\sin^2(\pi n) \geq 0 , \ (2)$
где $ z = \sqrt[n]{xy} $ .
Очевидно, что при $ a=1 $ корни уравнения Ферма обращают
функцию (2) в ноль, то есть в этих точках функция (2)
имеет локальные минимумы.
Запишем необходимые условия существования экстремума функции (2):
$\frac{\partial F}{\partial x_0}=\pi ay \ n \ z^{1-n}\ \sin(2 \pi a z)+\pi a\sin(2\pi a x) = 0 ,\ (3)$
$\frac{\partial F}{\partial y_0}=\pi ax \ n \ z^{1-n}\ \sin(2 \pi a z)+\pi a\sin(2\pi a y) = 0 .\ (4)$
Будем искать координаты минимума функции (2) во множестве
натуральных координат, поэтому запишем необходимые условия существования экстремума
функции (2) в точках с целыми координатами $ x_0$ и $ y_0$
для чего координаты $ x_0$ и $ y_0$ подставим в уравнения (3) и (4).
Тогда получим
$\pi ay_0/n \sin(2 \pi a z_0)+\pi a\sin(2\pi a x_0) = 0 ,\ (5)$
$\pi a x_0/n \sin(2 \pi a z_0)+\pi a\sin(2\pi a y_0) = 0 .\ (6)$
где $ z_0 = \sqrt[n]{x_0y_0} $ .
Таким образом, получили два уравнения с переменными $ n $ и $ a $ и
постоянными коэффициентами $ x_0$ и $ y_0$.
В эти уравнения входит неопределенное число $\ z_0 = \sqrt[n]{(x_0y_0)}$
неопределенное в смысле того, какое значение оно принимает
целое или иррациональное. Чтобы исключить это число
преобразуем уравнения (5) и (6) к виду:
$\frac{y_0 }{x_0 } =\frac{\sin(2\pi a x_0)}{\sin(2\pi a y_0)} .\ (7)$
Уравнение (7) можно рассматривать как неявную функцию переменных $ n $ и $ a $,
то есть это уравнение позволяет найти нам функцию $ n ( a ) $, в которой $ x_0$ и $ y_0$
постоянны и не зависят от переменной $ a $.
В этом случае отношение $ \sin(2\pi a x_0) \ / \sin(2\pi a y_0) $
при $ a=1 $ не определено, но имеет вполне определенный смысл при
значениях $ a \neq 1 $ . Следовательно, может быть поставлен вопрос
о разыскании предела этого отношения при $ a \to 1 $ . Если
раскроем неопределенность по правилу Лопиталя, придем к уравнению
$\frac{y_0 }{x_0 } =\frac{x_0 }{y_0 }\ (8)$
При $ x_0 $ и $ y_0 $, равными различным натуральным числам, и
$ n \neq 2  ,в том числе и при  \ n=3 $, уравнение (8) противоречиво
и поэтому функция (2) в этих точках не может иметь минимума,
а, следовательно, и нет таких натуральных чисел, которые бы
удовлетворяли уравнению (1).
Таким образом, теорема доказана.

Где-то так :D

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение26.11.2017, 18:47 


05/11/17

53
ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ФЕРМА
Будем натуральные числа, которые удовлетворяют уравнению (1),
называть корнями уравнения Ферма и обозначать $ x_F$ , $ y_F$ , $ z_F$ и $ n_F$
$\ x^n+y^n=z^n. \ (1)$ .
Если искать решения уравнения (1) во множестве целых чисел,
то уравнение (1) является диофантовым уравнением Ферма,
решениями которого будут натуральными числа $ x_F$ , $ y_F$ , $ z_F$ и $ n_F$ .
Рассмотрим вещественное уравнение с вещественными переменными $ x$ , $ y$ , $ z$ и $ n$
$ \sin^2(\pi a z)\ +\ \sin^2(\pi a x)+\sin^2(\pi a y)+\sin^2(\pi n) = 0 , \ (2)$,
где $ z = \sqrt[n]{x^n+y^n} $.
Очевидно, что при $ a=1 $ корни уравнения Ферма обращают функцию (2) в ноль, то есть
корни уравнения Ферма являются и корнями уравнения (2).
Следует заметить, что других корней уравнение (2) не имеет, то есть множества корней
уравнения Ферма и уравнения (2) совпадают, то есть уравнение (2) и уравнение Ферма эквивалентны.
Рассмотрим вещественную функцию вещественных переменных $ x $ , $ y $ , $ n $ и $ a $ (левая часть уравнения (2)).
$ F(x,y,n,a)=\sin^2(\pi a z)\ +\ \sin^2(\pi a x)+\sin^2(\pi a y)+\sin^2(\pi n) \geq 0 , \ (3)$
где $ z = \sqrt[n]{x^n+y^n} $ ; $ x , y , n > 1$ ; a $\in { ( 1-\Delta a; 1+\Delta a )}$ и $ \Delta a$ - достаточно малое число.
Очевидно, что при $ a=1 $ корни уравнения Ферма обращают функцию (2) в ноль,
то есть в этих точках функция (2) имеет локальные минимумы.
Таким образом, задачу решения диофантового уравнения Ферма (1) свели
к решению тригонометрического уравнения (2) и задаче нахождения экстремумов функции (3)
при $ a = 1$.
Запишем необходимые условия существования экстремума функции (3):
$\frac{\partial F}{\partial x_0}=\pi a \ x^{n-1} \ z^{1-n}\ \sin(2 \pi a z)+\pi a\sin(2\pi a x) = 0 ,\ (4)$
$\frac{\partial F}{\partial y_0}=\pi a \ y^{n-1} \ z^{1-n}\ \sin(2 \pi a z)+\pi a\sin(2\pi a y) = 0 .\ (5)$
Будем искать координаты минимума функции (3) во множестве
натуральных координат, поэтому запишем необходимые условия существования экстремума
функции (3) в точках с целыми координатами $ x_0$ и $ y_0$
для чего координаты $ x_0$ и $ y_0$ подставим в уравнения (4) и (5).
Тогда получим
$\pi a \ x_0^{n-1} \ z_0^{1-n}\ \sin(2 \pi a z_0)+\pi a\sin(2\pi a x_0) = 0 ,\ (6)$
$\pi a \ y_0^{n-1} \ z_0^{1-n}\ \sin(2 \pi a z_0)+\pi a\sin(2\pi a y_0) = 0 .\ (7)$
где $ z_0 = \sqrt[n]{x_0^n+y_0^n} $ .
Таким образом, получили два уравнения (6) и (7) с переменными $ n $ и $ a $ и
постоянными коэффициентами $ x_0$ и $ y_0$.
В эти уравнения входит неопределенное число $\ z_0 = \sqrt[n]{(x_0^n+y_0^n)}$
неопределенное в смысле того, что неизвестно какое значение оно принимает
целое или иррациональное. Чтобы исключить это число
преобразуем уравнения (6) и (7). Обе части уравнения (6) поделим на $\pi a\sin(2\pi a x_0)$ , а
обе части уравнения (7) поделим на $\pi a\sin(2\pi a y_0)$ , затем из первого полученного уравнения
вычтем второе полученное уравнение, тогда получим уравнение (8)
$\frac{\sin(2\pi a x_0)}{x_0^{n-1} } - \frac{\sin(2\pi a y_0)}{y_0^{n-1} } = 0\ (8)$ .
Любое уравнение вида $\Phi ( u , v ) = 0$ можно считать заданием неявной функции $ u ( v )$.
Поэтому уравнение (8) можно рассматривать как неявную функцию
переменной $ n $ от переменной $ a $, то есть $ n ( a )$ .
Таким образом, уравнение (8) позволяет найти при $ a\neq 1$ функцию $ n ( a ) $, в которой $ x_0$ и $ y_0$
постоянны и не зависят от переменной $ a $.
Из уравнения (8) я можно выразить зависимость $ n ( a )$ в явном виде:
$ \ n ( a ) = 1 + \frac{\ln\frac{\sin(2\pi a x_0) }{\sin(2\pi a y_0) }}{\ln\frac{\ x_0}{\ y_0}}\ (9)$
График функции (9) показан на рис. 1.

Изображение

Функция (9) определена при $ a \neq 1$, а в точке $ a = 1$ функция (9) не определена.
Найдем по правилу Лопиталя предел функции (9) когда $ a \to 1$.
Этот предел равен $ n_p = \lim\limits_{a\to 1} n ( a)= 2 $.
Предел функции (9) $ n_p$ не зависиn от значений $ x_0$ и $y_0$ и равен 2,
то есть $ n_p = 2$ при любых значениях $ x_0$ и $y_0$.
Мы нашли предел функции (9) $ n_p $ только и всего.
Функция (9) при $ a = 1$ не позволяет определить координату экстремума функции (3),
чтобы определить эту координату надо вернуться к эквивалентному диофантовому уравнению Ферма.
Если есть решение диофантового уравнения Ферма, то координаты точки экстремума при $ a = 1$
будут равны $ x_0 = x_F$ , $ y_0 = y_F$ , $ z_0 = z_F$ и $ n = n_F$ .
На Рис. 1. точка $ n = n_F = 3$ соответствует точке $ C$ , точке $ n = n_F = 2$
соответствует выколотая точка $ B$ .
Следует заметить, что если $ n = n_F = 3$ , то функция координат точек экстремумов будет иметь разрыв,
а если $ n = n_F = 2$ , то функция координат точек экстремумов будет непрерывной.
Если функция координат точек экстремумов имеет разрыв в точке $ a = 1$ , то это свидетельствует о том,
что не существует решений диофантового уравнения Ферма при $  n_F $ ,
а если функция координат точек экстремумов непрерывна, то это свидетельствует о том,
что при данном $  n_F $ решения диофантового уравнения Ферма существуют.
Поскольку функция координат точек экстремумов при $ n_F  = 3$ и $ n_F  > 3$ имеет разрывы,
поэтому при $ n > 2$ диофантовое уравнение Ферма не имеет решение.
Функция координат точек экстремумов только при $ n_F  = 2$ будет непрерывной, поэтому
диофантовое уравнение Ферма имеет решения только при $ n = 2$ .
Графики функции при фиксированных х0 , у0 и n=3 показаны на Рис. 2.
Изображение

Таким образом, теорема Ферма доказана.
Следует заметить, что доказательство теоремы Ферма выполнено методом, основанном
на сведении решения диофантового уравнения Ферма к решению
эквивалентного тригонометрического уравнения и нахождению минимумов функции,
получаемой из тригонометрического уравнения.

-- 26.11.2017, 18:58 --

Коровьев !
У Вас уравнение
$ F(x,y,n,a)=\sin^2(\pi a z)\ +\ \sin^2(\pi a x)+\sin^2(\pi a y)+\sin^2(\pi n) = 0  $ ,
соответствующее функции (2) не эквивалентно уравнению (1).

-- 26.11.2017, 18:59 --

Коровьев !
У Вас уравнение
$ F(x,y,n,a)=\sin^2(\pi a z)\ +\ \sin^2(\pi a x)+\sin^2(\pi a y)+\sin^2(\pi n) = 0  $ ,
соответствующее функции (2) не эквивалентно уравнению (1).

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение26.11.2017, 19:26 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Vadim44 в сообщении #1269288 писал(а):
Следует заметить, что если $ n = n_F = 3$ , то функция координат точек экстремумов будет иметь разрыв,

Неверно. Ваша функция $n(a)$- это всего лишь функция полученная из необходимого условия экстремума.

Цитата:
Если функция координат точек экстремумов заменить на ФУНКЦИЯ$n(a)$ имеет разрыв в точке $ a = 1$ , то это свидетельствует о том,
что не существует решений диофантового уравнения Ферма при $ n_F $

Это утверждение не доказано.



Давайте, проверим, будет ли ВАша функция $n(a)$ описывать экстремум функции 2. Для этого нужно подставить выражение для
$n(a)$ в одно из условий 6 или 5. Хоть в какое. Если это условие будет выполнено, то, да, Вы правы. Если же 5 с таким $n(a)$ будет нарушено, то, увы, у Вас не экстремум.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение26.11.2017, 20:20 
Заслуженный участник
Аватара пользователя


23/07/05
18040
Москва
Vadim44 в сообщении #1269184 писал(а):
Уважаемая provincialka!
Я просто прикололся и подыграл shwedka ,
чтобы доказательство теоремы не было скучным.
Однако shwedka не шутила. Она совершенно права: доказательство, содержащее 99% верных утверждений и умозаключений и 1% ошибочных, на 100% ошибочно.

-- Вс ноя 26, 2017 20:20:38 --

Vadim44 в сообщении #1269226 писал(а):
Господин Коровьев вводит новую переменную $ c$, которую приравнивает к 1,
и не желает учитывать производную по $ c$.
Да ради бога, учитывайте. Проблема в том, что если учёт двух производных привёл к противоречию, то учёт трёх тем более даст противоречие. Это уж такая особенность логики: если удалось доказать утверждение какими-то средствами, то добавление новых средств доказательства не помешает доказать то же самое. Возможно, даже сделает проще.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение26.11.2017, 21:23 
Заслуженный участник
Аватара пользователя


18/12/07
762
Vadim44 в сообщении #1269288 писал(а):
Коровьев !
У Вас уравнение
$ F(x,y,n,a)=\sin^2(\pi a z)\ +\ \sin^2(\pi a x)+\sin^2(\pi a y)+\sin^2(\pi n) = 0  $ ,
соответствующее функции (2) не эквивалентно уравнению (1).


Тут не эквивалентно
Коровьев в сообщении #1269250 писал(а):
Будем натуральные числа, которые удовлетворяют уравнению (1),
называть корнями уравнения
$\ xy=z^n. \ (1)$
Рассмотрим функцию переменных $ x $ , $ y $ , $ n $ и $ a $ .
$ F(x,y,n,a)=\sin^2(\pi a z)\ +\ \sin^2(\pi a x)+\sin^2(\pi a y)+\sin^2(\pi n) \geq 0 , \ (2)$
где $ z = \sqrt[n]{xy} $ .


А тут эквивалентно
Vadim44 в сообщении #1267670 писал(а):
Будем натуральные числа, которые удовлетворяют уравнению (1),
называть корнями уравнения Ферма
$\ x^n+y^n=z^n. \ (1)$
Рассмотрим функцию переменных $ x $ , $ y $ , $ n $ и $ a $ .
$ F(x,y,n,a)=\sin^2(\pi a z)\ +\ \sin^2(\pi a x)+\sin^2(\pi a y)+\sin^2(\pi n) \geq 0 , \ (2)$
где $ z = \sqrt[n]{x^n+y^n} $ .


Никак двойные стандарты и в математику полезли!? :shock:
Так в чём у меня не эквивалентность?

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение27.11.2017, 11:08 


03/10/06
826
Vadim44 в сообщении #1269190 писал(а):
Господин Коровьев !
Вы неправильно использовали метод доказательства.
Вы ввели в функцию новую величину 1, а следовало
ввести в функцию новую переменную $ c$,
которая может принимать целые значения.

Ну значит вы ту же самую переменную приравняли к нулю. Или в чём разница между нулём и единицей? Оба целые значения одной переменной. И значит, вы неправильно использовали метод доказательства.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение27.11.2017, 11:48 


05/11/17

53
Someone !
Вы прекрасны, спору нет, но ...
Но, тогда, Вы должны будите разрешить противоречие
между теорией вероятности и логикой.
Давайте продолжим Ваши рассуждения.
Вы получили, что вероятность ошибки равна 100%,
следовательно вероятности безошибочности утверждения равна 0%,
то есть Вы доказали ошибочность исходной предпосылки.
А как известно из ошибочных предпосылок нельзя получить верное решение!

Господин Коровьев !
Если Вы Коровьев, то кто же тогда Воланд?
Вы в своем примере показали, что метод не работает.
И из этого Вы делаете вывод, что доказательство теоремы Ферма не верное.
Тогда, не будите ли Вы так любезны, не в службу, а в дружбу,
указать в каком месте доказательства сокрыта ошибка.
А Вы не допускаете, что Вы не можете применять метод в Вашем случае.
В Ваших рассуждениях имеется такая же ошибка, так ее надо
обнаружить и у Вас. Поищите ее.

-- 27.11.2017, 11:56 --

yk2ru !
А как по-Вашему нужно ввести в эквивалентное уравнение новую величину или переменную?

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение27.11.2017, 12:09 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Vadim44 в сообщении #1269525 писал(а):
Тогда, не будите ли Вы так любезны, не в службу, а в дружбу,
указать в каком месте доказательства сокрыта ошибка.

Что за цирк! Я Вам только что в очередной раз указала эту (фактически, одну и ту же все время) ошибку.
shwedka в сообщении #1269302 писал(а):
Vadim44 в сообщении #1269288 писал(а):
Следует заметить, что если $ n = n_F = 3$ , то функция координат точек экстремумов будет иметь разрыв,

Неверно. Ваша функция $n(a)$- это всего лишь функция полученная из необходимого условия экстремума.

Цитата:
Если функция координат точек экстремумов заменить на ФУНКЦИЯ$n(a)$ имеет разрыв в точке $ a = 1$ , то это свидетельствует о том,
что не существует решений диофантового уравнения Ферма при $ n_F $

Это утверждение не доказано.



Давайте, проверим, будет ли ВАша функция $n(a)$ описывать экстремум функции 2. Для этого нужно подставить выражение для
$n(a)$ в одно из условий 6 или 5. Хоть в какое. Если это условие будет выполнено, то, да, Вы правы. Если же 5 с таким $n(a)$ будет нарушено, то, увы, у Вас не экстремум.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение27.11.2017, 12:20 


20/03/14
12041
 i  Тема закрыта в связи с нежеланием или неспособностью ТС осмыслить многократно указанное многими участниками заблуждение и вести конструктивный диалог.


-- 27.11.2017, 15:09 --

 i  Временно открыто по просьбе shwedka

Vadim44
Прекратите оффтоп в теме и отвечайте на заданные Вам вопросы по существу. Четко и внятно. Не можете ответить сразу - подумайте сколь угодно долго. Вас никто не гонит. В случае продолжения в том же духе тема будет закрыта окончательно с той же формулировкой.

Начните с ответа на пост post1269528.html#p1269528 и дальше как потребуется.
Замечание: настаивать на своей правоте совсем необязательно. Наоборот. Есть смысл подумать над критическими замечаниями оппонентов.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение27.11.2017, 14:10 
Заслуженный участник
Аватара пользователя


23/07/05
18040
Москва
Vadim44 в сообщении #1269525 писал(а):
Давайте продолжим Ваши рассуждения.
Вы получили, что вероятность ошибки равна 100%
Извините, но бред про вероятности принадлежит исключительно Вам. Здесь никто, кроме Вас, ничего не говорил о вероятностях.

Vadim44 в сообщении #1269525 писал(а):
Тогда, не будите ли Вы так любезны, не в службу, а в дружбу,
указать в каком месте доказательства сокрыта ошибка.
А Вы не допускаете, что Вы не можете применять метод в Вашем случае.
В Ваших рассуждениях имеется такая же ошибка, так ее надо
обнаружить и у Вас. Поищите ее.
Вам продемонстрировали, что Ваш метод позволяет доказать ошибочное утверждение, следовательно, он содержит ошибку. Поиск ошибки никого, кроме Вас, не интересует.
Внятных объяснений, почему Ваш метод нельзя применять в других случаях, например, при $n=1$, Вы не представили.
Что касается меня, то я вообще не понимаю, какое отношение всё это имеет конкретно к теореме Ферма или к какому-нибудь другому диофантову уравнению. Потому что тот член, который хоть как-то связан с конкретным уравнением, Вы заботливо уничтожаете в своих рассуждениях, а остаются члены, совершенно одинаковые для большого количества уравнений, среди которых часть точно имеют решения, потому что они известны, а часть, может быть, и не имеют.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение27.11.2017, 16:26 


05/11/17

53
Уважаемая Shwedka!

shwedka в сообщении #1268300 писал(а):
shwedka в сообщении #1269164 писал(а):
shwedka в сообщении #1268300

писал(а):
B. Совершенно недопустимо обозначать различные величины одним и тем же символом!!!!!
У Вас


А Вы сами различные функции обозначили одними символами, функцию $ N ( a )$ и функцию $ n ( a )$.
Надо различать функцию координат точек экстремумов N(a) и функцию n(a),
где $ n ( a )$ -это функция, полученная из необходимого условия экстремума.

$ N ( a ) = n^- ( a ) +n_F + n^+ ( a )$ ,
где $ D$ $n^-  ( a )  = ( 1 -\Delta a  , 1 ) ;$
$D $ $ ( n_F ) =[ 1 ] ;$
$ D$ $n^-  ( a )  = ( 1 , 1 +\Delta a ) ;$ .


Не надо искажать текст доказательства.
Вы пишете:
shwedka в сообщении #1269302 писал(а):
Цитата:

Если функция координат точек экстремумов заменить на ФУНКЦИЯ$n(a)$ имеет разрыв в точке $ a = 1$ , то это свидетельствует о том,
что не существует решений диофантового уравнения Ферма при $ n_F $
Это утверждение не доказано.


А в тексте доказательства написано:
Vadim44 в сообщении #1269288 писал(а):
Если функция координат точек экстремумов имеет разрыв в точке $ a = 1$ , то это свидетельствует о том,
что не существует решений диофантового уравнения Ферма при $  n_F $

Будьте спокойны, это утверждение будет доказано, но после того как разберемся с сделанными замечаниями.

Вы пишете:
shwedka в сообщении #1269302 писал(а):
Давайте, проверим, будет ли ВАша функция $n(a)$ описывать экстремум функции 2. Для этого нужно подставить выражение для
$n(a)$ в одно из условий 6 или 5. Хоть в какое. Если это условие будет выполнено, то, да, Вы правы. Если же 5 с таким $n(a)$ будет нарушено, то, увы, у Вас не экстремум.


Вы путаете причину и следствие, значения трех различных необходимых условий f6(a), f7(a) и f9(a) будут совпадать только в точке экстремума, в других точках они не совпадают.
Это можно проиллюстрировать рис. 3.
Изображение

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 156 ]  На страницу Пред.  1 ... 7, 8, 9, 10, 11  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Antoshka


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group