Ни че не понял. Ну давайте я это уравнение еще в явном виде наишу

можно проинтегрировать:

И что? В чем ваша проблема? Вам уже объясняли люди выше по ветке, что сила трения между подошвами человека и платформой (при условии, что нет проскальзывания) это реакция идеальной голономной связи, реакции идеальных голономных связей в уравнения Лагранжа второго рода не входят. А это:

-- уравнение идеальной связи.
Вы добавили зачем-то непотенциальные активные силы. И что, собственно, вы доказали-то? Вам за учебник надо садиться, вы не понимаете, что такое идеальная связь, судя по всему. Без этого нельзя понимать, что такое уравнения Лагранжа.