2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 
Сообщение10.06.2008, 10:36 
Аватара пользователя
Когда говорят, что два множества не пересекаются мне слышится:
1) операция пересечения на этой паре не определена :D
2) их пересечение пусто

 
 
 
 
Сообщение10.06.2008, 12:51 
Аватара пользователя
Spook писал(а):
Профессор Снэйп а как тогда быть с таким фактом, что два пустых множества не пересекаются (у них нет общих элементов)?


Да ну как с этим быть? Признать, что из $A \cap B = \varnothing$ не следует $A \neq B$. И просто быть дальше :)

 
 
 
 
Сообщение10.06.2008, 14:48 
Аватара пользователя
Профессор Снэйп ну придется признать :)
:!: Теперь я знаю, что пустое множество единственно. Спасибо.

 
 
 
 
Сообщение10.06.2008, 15:25 
Аватара пользователя
Spook писал(а):
Профессор Снэйп ну придется признать :)
:!: Теперь я знаю, что пустое множество единственно. Спасибо.


О, да!!! Оно единственно и было вначале. Все остальные множества произошли из него.

И сдаётся мне, что у Цермело и Френкеля теология крепко в башке сидела... А вообще, всю современную математику придумали средневековые схоласты.

 
 
 
 
Сообщение10.06.2008, 15:49 
Аватара пользователя
Профессор Снэйп писал(а):
И сдаётся мне, что у Цермело и Френкеля теология крепко в башке сидела...

Угу, это они подловили Кронекера на неточности и сказали: "Бог создал пустое множество", а вот над всем остальным пришлось попотеть средневековым схоластам.

 
 
 
 
Сообщение10.06.2008, 19:24 
Аватара пользователя
bot писал(а):
Угу, это они подловили Кронекера на неточности и сказали: "Бог создал пустое множество"...


Причём создал из "ничего" :)

Добавлено спустя 2 часа 37 минут 17 секунд:

Подумал вот, что "ничего" тоже разное бывает.

Правда, это уже какой-то буддизм получается. Ну или русский рок :)

Егор Летов писал(а):
Посредине красота, посредине горячо,
Позади нас пустота, впереди ваще ничё

 
 
 
 
Сообщение11.06.2008, 08:29 
Как некоторое следствие этого ( точнее сказать не могу, я "для себя" это доказывал от противного ) идет широко используемое в трудах Бурбаки соотношение, что пересечение пустого семейства подмножеств множества X будет совпадать с X.
( Напротив, объединение пустого семейства подмножеств будет пустым множеством. )

За счет этого, например, три традиционные аксиомы открытой топологии сводятся к двум симпатично-двойственным. Так же несколько упрощаются вроде бы какие-то определения фильтров, хотя точно уже не помню.

 
 
 
 
Сообщение11.06.2008, 09:05 
Аватара пользователя
id писал(а):
Как некоторое следствие этого (точнее сказать не могу, я "для себя" это доказывал от противного ) идет широко используемое в трудах Бурбаки соотношение, что пересечение пустого семейства подмножеств множества X будет совпадать с X.
( Напротив, объединение пустого семейства подмножеств будет пустым множеством. )


Так это же просто по определению пересечения! Определение есть определение, точнее уже некуда...

Определение: Для $A \subseteq \mathcal{P}(X)$

$$
\bigcap A = \{ x \in X : (\forall a \in A)(x \in a) \}
$$

Посмотрите сами, что за множество получается справа при $A = \varnothing$.

Добавлено спустя 3 минуты 19 секунд:

Подумайте также над равенствами $\inf \varnothing = +\infty$ и $\sup \varnothing = -\infty$. Они ведь не случайны :)

 
 
 
 
Сообщение11.06.2008, 09:24 
Профессор Снэйп
Ну да. Но все равно как-то удивляет, когда в первый раз это видишь, что пересечение пустого семейства множеств непусто. :)

Неравенства вроде и то естественнее, от противного доказываются вроде бы нормально. А какие-то еще подобные особенности есть?

 
 
 
 
Сообщение11.06.2008, 09:47 
Аватара пользователя
id писал(а):
Но все равно как-то удивляет, когда в первый раз это видишь, что пересечение пустого семейства множеств непусто. :)


А то, что инфимум больше супремума, Вас не удивляет?

id писал(а):
А какие-то еще подобные особенности есть?


Докажите, исходя из определений, что $\varnothing^\varnothing = \{ \varnothing \}$ (то есть что $0^0=1$ :) ).

 
 
 
 
Сообщение11.06.2008, 14:09 
Аватара пользователя
Профессор Снэйп писал(а):
Подумайте также над равенствами $\inf \varnothing = +\infty$ и $\sup \varnothing = -\infty$. Они ведь не случайны :)

Как это вообще? Это откуда-то получается? Или постулируется для удобства?
Профессор Снэйп писал(а):
Докажите, исходя из определений, что $\varnothing^\varnothing = \{ \varnothing \}$ (то есть что $0^0=1$ :) ).

Ну ведь это просто отображение $\varnothing\to\varnothing$. Оно одно. А вот с арифметическими операциями c точки зрения множеств уже не так все ясно. Даже для простейших из них, например $3+2=5$, хотя они должны доказываться "на низком уровне".

Добавлено спустя 29 секунд:

Хотя это вроде не в тему :)

 
 
 
 
Сообщение11.06.2008, 14:31 
Профессор Снэйп
Если не доказывать - удивляет, еще как! Правда, стукнуло этой удивительностью только после Вашего замечания...
А вот если доказать, то все по местам становится.
Тут еще, быть может, стоит учитывать, что пустое мн-во - подмножество каждого - тогда все становится несколько естественнее.


За утверждение спасибо, подумаю. :)
В Архангельском: Общая топология в задачах и упражнениях есть удобная вроде бы для этого утверждения интерпретация ( ну или точнее обобщение декартова произведения на произвольные множества ),что $A^B$ есть множество всех отображений из B в A.

Т.е. в данном случае интересует множество отображений из пустого множества в пустое, которое состоит из единственного "пустого" отображения.

Так? Или...

Добавлено спустя 22 минуты 5 секунд:

Опередили. :)

 
 
 
 
Сообщение11.06.2008, 15:19 
Аватара пользователя
Spook писал(а):
Профессор Снэйп писал(а):
Подумайте также над равенствами $\inf \varnothing = +\infty$ и $\sup \varnothing = -\infty$. Они ведь не случайны :)

Как это вообще? Это откуда-то получается? Или постулируется для удобства?


Это получается непосредственно из определений.

Пусть $\langle A, \leqslant \rangle$ --- некоторое частично упорядоченное множество. Вспомним определения.

1) Для $X \subseteq A$ элемент $x \in X$ называется наименьшим$X$), если $(\forall y \in X)(x \leqslant y)$.

2) Для $X \subseteq A$ элемент $a \in A$ называется верхней гранью для $X$, если $(\forall x \in X)(x \leqslant a)$. Множество всех верхних граней для $X$ обозначаем $\Gamma^\ast(X)$.

3) Для $X \subseteq A$ если в множестве $\Gamma^\ast(X)$ есть наименьший элемент, то он называется супремумом $X$ и обозначается $\sup X$.

Ну а теперь возьмём $X = \varnothing$. Согласно второму определению

$$
\Gamma^\ast(\varnothing) = \{ a \in A : (\forall x \in \varnothing)(x \leqslant a) \} = A
$$

Значит, $\sup \varnothing$ --- это наименьший элемент в $A$. Аналогично $\inf \varnothing$ есть наибольший элемент в $A$.

В случае, когда в качестве $A$ рассматривается расширенная числовая прямая, мы получаем как раз то, что Вас интересовало. Любое действительное число есть верхняя грань пустого множества, а $\sup \varnothing$ --- наименьшая среди них :)

Добавлено спустя 2 минуты 46 секунд:

Spook писал(а):
А вот с арифметическими операциями c точки зрения множеств уже не так все ясно. Даже для простейших из них, например $3+2=5$, хотя они должны доказываться "на низком уровне".


Так оно и доказывается всё на "низком уровне". Никаких проблем с этим никогда не было, стандартное упражнение для студентов :)

Добавлено спустя 1 минуту 16 секунд:

id писал(а):
Т.е. в данном случае интересует множество отображений из пустого множества в пустое, которое состоит из единственного "пустого" отображения.

Так? Или...


Да, именно так :)

 
 
 
 
Сообщение12.06.2008, 10:23 
Аватара пользователя
Профессор Снэйп писал(а):
Любое действительное число есть верхняя грань пустого множества, а $\sup \varnothing$ --- наименьшая среди них :)

Да, прикольно... :)
Профессор Снэйп писал(а):
Так оно и доказывается всё на "низком уровне". Никаких проблем с этим никогда не было, стандартное упражнение для студентов :)

Я кажется понял, как это делается:
полагается по определению, что $n+1=n\cup\{n\}$, где 0 - пустое множество, отсюда вроде и получается.

Возникает вопрос: если на "низком уровне" доказано, что $0^0=1$, то как это сочетается с тем, что $\lim\limits_{x\to{0}}x^x$ не определен, а значит и $0^0$ не определен?

 
 
 
 
Сообщение12.06.2008, 11:41 
Аватара пользователя
Spook писал(а):
Я кажется понял, как это делается:
полагается по определению, что $n+1=n\cup{n}$, где 0 - пустое множество, отсюда вроде и получается.


Правильно $n+1=n\cup\{n\}$.

Код:
[math]$n+1=n\cup\{n\}$[/math]


Spook писал(а):
Возникает вопрос: если на "низком уровне" доказано, что $0^0=1$, то как это сочетается с тем, что $\lim\limits_{x\to{0}}x^x$ не определен, а значит и $0^0$ не определен?


Вообще говоря, тот факт, что $\left|\varnothing^{\varnothing}\right|=1$, никакого отношения к теории пределов не имеет, поскольку в теории пределов используются свои собственные определения.
Что касается конкретного предела $\lim\limits_{x\to{0}}x^x$, то он благополучно равен $1$. Но предел вида $\lim\limits_{x\to a}u(x)^{v(x)}$, если $\lim\limits_{x\to a}u(x)=0$ и $\lim\limits_{x\to a}v(x)=0$, может иметь любое конечное или бесконечное значение или вообще не существовать.

 
 
 [ Сообщений: 68 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group