Здравствуйте,
Вот решение задачи 14.16 из " Сборник задач по теории относительности - Лайтман, Пресс, Прайс, Тюкольски."
ссылка на изображение, размер: 262 кбайт, 1024 x 576 точекКратко запишу элементарное обобщение этого решения:
В отсутствии токов вторая пара уравнений Максвелла имеет вид:

Далее осуществим обобщение данного уравнения, заменяя запятую на точку с запятой, тогда:

последнее соотношение можно записать в форме:

Так для сравнения с другими учебниками (скажем с "Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика ТЕОРИЯ ПОЛЯ") где по умолчанию полагается

, в " Сборник задач по теории относительности - Лайтман, Пресс, Прайс, Тюкольски." предлагается провести эксперимент для выяснения чему равно

.
В силу того что у меня нет возможности провести эксперимент, а мои попытки найти обсуждения этой неоднозначности не увенчались успехом, я и задаю вопрос здесь на форуме.