Например, суждение о сингулярности - это теоретическое построение в рамках ОТО. Например, классический радиус электрона - тоже пример теоретизации.
С этим никто не спорит. Наука изучает теоретические модели. Просто оказывается, что они более-менее, в определённых пределах, соответствуют реальности.
Как совместить возрастание энтропии (или в принципе вообще формулировку второго закона термодинамики) с теорией эволюции, где постулируется что постепенно происходила увеличение разнообразия организмов и повышение их сложности.
Совместить их очень просто - но только для тех, кто знает точную формулировку второго закона термодинамики, а не кучу дилетантских разговоров вокруг этого закона.
Наука использует математический аппарат, который имеет предел
Математика представляет собой язык, на котором записываются теоретические модели. (Меня здесь могут поправить, сказав, что математика - это не только язык, это больше чем язык; и на эту тему можно спорить, однако функцию языка математика точно выполняет). Понятно, что возможности любого языка для описания реальности могут быть ограничены. Но, во всяком случае, эти возможности у математического языка больше, чем у любого другого известного ныне.
Наука использует математический аппарат, который имеет предел (понятие невычислимости, расселовские парадоксы, теорема Геделя это отражают).
Вот ещё пример неточного высказывания (как и тот, с которого началась эта тема). Ну что такое "имеет предел"? В приведённых же "примерах отражения" этого "предела" всё свалено в кучу.