2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 14, 15, 16, 17, 18, 19  След.
 
 Re: Летающий волчок
Сообщение20.03.2017, 14:34 
Заслуженный участник
Аватара пользователя


30/01/06
72407
wrest в сообщении #1202094 писал(а):
Вообще же получается вроде так, что например твердость тел (или упругость) является следствием существенно квантовых причин

Это хорошо известно всем, кто не прогуливал школу.

wrest в сообщении #1202094 писал(а):
и представление о том, что упругость, трение и т.п. явления по сути электромагнитные -- существенно неверное

Это заявление бред. Разумеется, электромагнитные.

wrest в сообщении #1202094 писал(а):
Ирншоу запретил устойчивость.

И это заявление бред. Ирншоу запрещал не "устойчивость вообще", а вполне конкретную вещь.

Если вы ничего не знаете, и только слышали о чём-то краем уха, то не рассуждайте про Ирншоу и другие такие материи. Только поток глупостей получается.

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение20.03.2017, 14:51 


05/09/16
12445
Munin в сообщении #1202106 писал(а):
Это заявление бред. Разумеется, электромагнитные.

Да, точно.


Munin в сообщении #1202106 писал(а):
Ирншоу запрещал не "устойчивость вообще", а вполне конкретную вещь.

Только вот вы никак не растолкуете какую. И главное -- растолкуйте уже пож-ста чего Ирншоу НЕ запрещал. Чего ждете-то? :roll:

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение20.03.2017, 14:58 
Заслуженный участник
Аватара пользователя


30/01/06
72407
wrest в сообщении #1202117 писал(а):
Только вот вы никак не растолкуете какую.

А отчего бы вам не пойти и не почитать учебник?

wrest в сообщении #1202117 писал(а):
И главное -- растолкуйте уже пож-ста чего Ирншоу НЕ запрещал.

Всего остального.

В частности, он не запрещал идти и читать учебник.

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение20.03.2017, 16:16 


05/09/16
12445
Munin в сообщении #1202120 писал(а):
А отчего бы вам не пойти и не почитать учебник?

Так я читал, вот Парселла например. А там про точечные заряды, и это (там где дивергенция ноль -> устойчивости нет, а она ноль везде где нет зарядов) мне понятно. А где есть (в каком учебнике) про устойчивость если подвешиваемые заряды связанны палочками, ниточками и пружинками, а подвешивающие -- тоже соединены палочками ниточками и пружинками -- я не знаю. А вы знаете?

В этой теме писалось про википедию ( https://ru.wikipedia.org/wiki/%D0%A2%D0 ... ite_ref-10 ) , но там во-первых только "идея" доказательства, а во вторых написано про "для жестких систем точечных зарядов и фиксированно заряженных твердых (абсолютно твердых) тел" . А если тела НЕ абсолютно твердые -- вот магнитную (ферромагнитную) резинку или пружинку, например, можно подвесить в магнитном поле, Ирншоу запрещает?

Там же, в Википедии, написано "По-видимому, теорема верна и для случая упругих связей зарядов."
Не подскажете, в каком учебнике есть доказательство на случай упругих связей зарядов? Заранее спасибо.

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение20.03.2017, 17:10 
Заслуженный участник
Аватара пользователя


30/01/06
72407
wrest в сообщении #1202138 писал(а):
Так я читал, вот Парселла например.

Надо читать учебники по матанализу и по уравнениям математической физики. А, ну и по дифференциальным уравнениям.

wrest в сообщении #1202138 писал(а):
В этой теме писалось про википедию

Этого я даже обсуждать не буду. Мусорка - не для нормальных людей.

wrest в сообщении #1202138 писал(а):
А где есть (в каком учебнике) про устойчивость если подвешиваемые заряды связанны палочками, ниточками и пружинками, а подвешивающие -- тоже соединены палочками ниточками и пружинками -- я не знаю. А вы знаете?

Это всё называется механика со связями, и рассматриватривается в учебниках теоретической механики. Рекомендуемая литература:
Ландау, Лифшиц. Теоретическая физика 1. Механика. - это начальная книга, но в ней пока ещё связей нет;
Арнольд. Математические методы классической механики.

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение20.03.2017, 17:34 


05/09/16
12445
Munin в сообщении #1202154 писал(а):
Арнольд. Математические методы классической механики.

Оттуда (1989 год издания) параграф 22 "Линеаризация", пункт Б. "Устойчивость положений равновесия" страница 91:
Цитата:
Кажется правдоподобным, что в аналитической системе с $n$ степенями свободы положение равновесия, не являющееся точкой минимума, неустойчиво, но это не доказано.

Кажется правдоподобным! :shock:

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение20.03.2017, 18:47 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Цитата:
Кажется правдоподобным, что в аналитической системе с $n$ степенями свободы положение равновесия, не являющееся точкой минимума, неустойчиво, но это не доказано.

Цитата:
Кажется правдоподобным! :shock:


Что то я не пойму этого заявления.
Если точка не является точкой минимума, она по определению неустойчива.

Мне вот пока прозрачно, что если есть электростатическое поле, и туда внесено жесткое твердое тело, с фиксированным распределением зарядов, то такое тело, имея 6 степеней свободы, не может иметь локального минимума ни при каком положении.
То есть можно обобщить случай материальной точки на твердое тело.
Просто конкретно в формулах нужно использовать факт жесткости, как мы это делаем выводя формулы для момента инерции твердого тела, его кинтической энергии и пр.
Ту же логику можно распространить и на поведение жесткого магнита в стационарном магнитном поле.
Понятно, что ни диэлектрики, на диамагнетики к таким телам не относятся.
Поэтому эти тела могут "обмануть" Лапласа-Ирншоу, как это делают сверхпроводники в магнитном поле.

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение20.03.2017, 18:56 


05/09/16
12445
fred1996 в сообщении #1202167 писал(а):
Поэтому эти тела могут "обмануть" Лапласа-Ирншоу, как это делают сверхпроводники в магнитном поле.

Сверхпроводники в этом обмане идут еще дальше: из-за дефектов они могут фиксироваться в нескольких (непрерывно изменяемых) положениях.

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение20.03.2017, 19:03 
Заслуженный участник


05/08/14
1632
fred1996 в сообщении #1202167 писал(а):
Если точка не является точкой минимума, она по определению неустойчива

Точка на плато?

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение20.03.2017, 19:27 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
dsge в сообщении #1202172 писал(а):
fred1996 в сообщении #1202167 писал(а):
Если точка не является точкой минимума, она по определению неустойчива

Точка на плато?


Если потенциал где-то постоянен в окрестности какой-то точки, он постоянен везде.
Этот случай неинтересен.

-- 20.03.2017, 08:31 --

Munin в сообщении #1202083 писал(а):
fred1996 в сообщении #1201973 писал(а):
Тогда после интегрирования нулевой член дает потенциал в центре, а к-ты при остальных порядках обязаны быть нулями.

Не понял, запишите формулами.


Чуток попозже попытаюсь формулами с потенциалами.
А пока проще Гауссом, которому пофиг какого порядка минимум вы ему пытаетесь подсунуть.
Ему все-равно какой порядок запрещать.

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение20.03.2017, 19:35 
Заслуженный участник
Аватара пользователя


30/01/06
72407
wrest
"Надёргивать цитаты" и "читать" - вещи разные.

-- 20.03.2017 19:36:40 --

fred1996 в сообщении #1202179 писал(а):
А пока проще Гауссом, которому пофиг какого порядка минимум вы ему пытаетесь подсунуть.

Да, так понятней.

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение20.03.2017, 22:42 


05/09/16
12445
Munin в сообщении #1202181 писал(а):
"Надёргивать цитаты" и "читать" - вещи разные.

Открыл книжку и прямиком в предметный указатель, на букву "У", Устойчивость -- и там вот ссылка на страницу 91, где и располагается процитированное. Значит, других мест про устойчивость в этой книжке нет.
Я там только не понял что значит "аналитическая система", в предметном указателе этого нет, пролистав первых страниц около 50 тоже не нашел. Но наверное "аналитическая" -- это без особых выкрутасов. А все остальное понятно: кажется правдоподным... но не доказано. Может с 1989 года уже и доказал кто?

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение20.03.2017, 23:28 
Заслуженный участник
Аватара пользователя


30/01/06
72407
wrest в сообщении #1202222 писал(а):
Открыл книжку и прямиком в предметный указатель, на букву "У"

А надо было:
1. Сначала открыть другую книжку. Рекомендованы они были в другом порядке.
2. Не прямиком в предметный указатель, а прямиком в текст. С самого начала. И до самого конца.
От невыполнения этих условий, у вас всегда будет получаться только ерунда.

wrest в сообщении #1202222 писал(а):
Значит, других мест про устойчивость в этой книжке нет.

Физико-математические знания устроены так, что нельзя сразу перепрыгнуть к сложной концепции. Надо сначала освоить другие. Строго последовательно.

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение21.03.2017, 01:09 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
fred1996 в сообщении #1202167 писал(а):
Цитата:

Мне вот пока прозрачно, что если есть электростатическое поле, и туда внесено жесткое твердое тело, с фиксированным распределением зарядов, то такое тело, имея 6 степеней свободы, не может иметь локального минимума ни при каком положении.
То есть можно обобщить случай материальной точки на твердое тело.


И для этого даже необязательно привлекать повороты.
Достаточно плоскопараллельных смещений.
Пусть у нас ест n-ное количество точечных зарядов, жестко связанных между собой.
И пусть они находятся в локальном минимуме некоего внешнего электростатического поля.
Мы ведь можем считать не поток электрического поля, а потоки $q_i\vec{E_i}$
Тогда если мы сместим наши заряды все разом в любом направлении, суммарная сила будет возвращать нас обратно. То есть вблизи малой окресности все суммарные силы направлены вовнутрь и суммарный поток сил не равен нулю. Но для каждого отдельного заряда он равен нулю.
Простое противоречие из обыкновенного принципа суперпозиции.

 Профиль  
                  
 
 Re: Летающий волчок
Сообщение21.03.2017, 02:22 
Заслуженный участник
Аватара пользователя


04/09/14
5414
ФТИ им. Иоффе СПб
fred1996, в вашем рассуждении две дырки (не одному же мне ляпы делать ;). Контрпример. Возьмем два заряда разного знака, одинаковых по модулю, и поместим их в поле $U=x$ (для простоты, будем считать задачу двумерной). Палка встанет по полю и будет находится в безразличном равновесии.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 283 ]  На страницу Пред.  1 ... 14, 15, 16, 17, 18, 19  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Geen


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group