Цитата:
Кажется правдоподобным, что в аналитической системе с
степенями свободы положение равновесия, не являющееся точкой минимума, неустойчиво, но это не доказано.
Цитата:
Кажется правдоподобным!
Что то я не пойму этого заявления.
Если точка не является точкой минимума, она по определению неустойчива.
Мне вот пока прозрачно, что если есть электростатическое поле, и туда внесено жесткое твердое тело, с фиксированным распределением зарядов, то такое тело, имея 6 степеней свободы, не может иметь локального минимума ни при каком положении.
То есть можно обобщить случай материальной точки на твердое тело.
Просто конкретно в формулах нужно использовать факт жесткости, как мы это делаем выводя формулы для момента инерции твердого тела, его кинтической энергии и пр.
Ту же логику можно распространить и на поведение жесткого магнита в стационарном магнитном поле.
Понятно, что ни диэлектрики, на диамагнетики к таким телам не относятся.
Поэтому эти тела могут "обмануть" Лапласа-Ирншоу, как это делают сверхпроводники в магнитном поле.