Мы знаем, что гравитация сравнительно слабое взаимодействие, а электрослабое -- сравнительно сильное.
Так же, мы знаем что сила обоих взаимодействий падает обратно пропорционально квадрату расстояния.
Это значит, что например если мы возьмём два раза по килограмму железа, отольем их в форму шаров и разнесем центры на 1 метр, между ними будет действовать сила притяжения равная (в СИ)
По закону Кулона, сила взаимодействия двух зарядов находится по формуле
, а если заряды равны, то
В СИ
, таким образом, чтобы
нужно чтобы
или примерно
(в СИ) т.е. для наших железных шаров
Кл
Такой заряд дают примерно
электронов, их массой наверное можно пренебречь.
Поместив указанный заряд на каждый из железных шаров, получим ли мы полную компенсацию силы тяжести и силы электростатического отталкивания?
В практическом смысле задача не кажется невыполнимой -- заряд который надо поместить на шары весьма мал (в опытах по натиранию эбонитовой палочкой получаются в десятки или даже сотни тысяч раз бОльшие заряды).
Всё ли пока верно?
Вопрос, собственно, такой: масштабируется ли вышенаписанное и до какого предела. Скажем, берем не килограмм железа а миллиард килограмм железа -- всё останется как есть -- сила тяжести будет уравновешена электростатикой?
А если берем несколько солнечных масс?
И главный вопрос: может ли получиться так, что мы можем "накормить" черную дыру таким количеством электрического заряда (кидая в неё электронами), что для определенного вида частиц (например, электронов) сила тяжести будет точно уравновешиваться силой электростатического отталкивания на любых расстояниях? Или так сделать нельзя и на каком-то расстоянии от черной дыры электроны будут притягиваться гравитацией, а на другом расстоянии наоборот -- отталкиваться от черной дыры электростатическими силами?