2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Три квадратных трехчлена
Сообщение24.10.2016, 20:33 
Аватара пользователя


18/01/16
627
Князь Хорошевский Клюж утверждал, что нашел три квадратных трехчлена: $ax^2+bx+с, bx^2+cx+a, cx^2+ax+b$, у которых $a>0,b>0,c>0$, имеющих по два корня каждый.Не ошибся ли он?
Ошибся.
1)Для $a>0,b>0,c>0$ верно, $b^2-4ac<b^2-ac$
2) Пусть $a>b>c$, тогда $c^2-4ac<c^2-ab<0$, поэтому второе уравнение не имеет корней. Аналогично рассуждаем для $b>a>c$ и $c>a>b$
3) Если $a=b=c$, то, очевидно, ни одно ур-е не имеет решений.
Правильно ли мое решение?

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение24.10.2016, 22:45 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Можно позабавнее. Имение каждому уравнению двух корней означает положительность дискриминантов. То есть $b^2>4ac;a^2>4bc;c^2>4ab$. Делаем невинное и получаем ужасный ужас.

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение24.10.2016, 23:20 
Аватара пользователя


18/01/16
627
gris
gris в сообщении #1162744 писал(а):
Делаем невинное

что за невинное? :D

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение24.10.2016, 23:46 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Ну что невиннейшего можно сделать с тремя одинаковыми неравенствами с положительными числами?

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение24.10.2016, 23:50 
Аватара пользователя


18/01/16
627
gris
Поделить

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение24.10.2016, 23:59 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Всё мы вам поделить. Вначале нужно приумножить. (Это я вообще имею в виду Жизнь).

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение25.10.2016, 00:09 
Аватара пользователя


18/01/16
627
gris
Это такой тонкий намек? :D

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение25.10.2016, 00:14 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Ну не такой уж тонкий. Давайте, приумножайте. Или преумножайте. А потом и поделить можно. Мне уж модераторы веником грозят. Знаете, выкладывание невзначай как потом аукается.

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение25.10.2016, 00:23 
Аватара пользователя


18/01/16
627
gris
gris в сообщении #1162802 писал(а):
Мне уж модераторы веником грозят

Так, это ведь не простая учебная задача, да и я привел полное решение, вроде бы, судя по отсутствию ваших критических замечений правильное :roll:

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение25.10.2016, 00:27 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Я уж и не знаю, вдруг я ошибся в чём. Тут ещё Мастера увидел лёгкий заход в тему. Думаю: чего он заходил? Ну перемножьте, плиз, три неравенства. Ведь это можно сделать?

(Оффтоп)

Это не простая учебная задача? Оригинально :-)

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение25.10.2016, 00:28 
Аватара пользователя


18/01/16
627
gris
Лан, щас закончу с физикой)

(Оффтоп)

Не знаю, простая, не простая, но это со школьного тура всероссийской олимпиады, причем шла предпоследней


-- 25.10.2016, 01:43 --

gris
Если перемножаем, то:
$b^2>4ac;a^2>4bc;c^2>4ab$

$b^2\cdot a^2\cdot c^2> 4ac\cdot 4bc\cdot 4ab$
$b^2\cdot a^2\cdot c^2> 64c^2b^2a^2$
$1>64$
Очевидное противоречие

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение25.10.2016, 15:56 


05/09/16
12059
По условию, первый многочлен является двучленом, там нет свободного коэффициента! Так что Клюж, возможно, был хитрее чем мы думаем :) Я бы предложил ТС теперь решить задачу именно в формулировке первого поста темы, с русской "с" в первом многочлене, которую TeX съел и не поперхнулся.

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение26.10.2016, 19:02 


21/05/16
4292
Аделаида
wrest в сообщении #1162998 писал(а):
По условию, первый многочлен является двучленом, там нет свободного коэффициента! Так что Клюж, возможно, был хитрее чем мы думаем :) Я бы предложил ТС теперь решить задачу именно в формулировке первого поста темы, с русской "с" в первом многочлене, которую TeX съел и не поперхнулся.

:D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D :D

 Профиль  
                  
 
 Re: Три квадратных трехчлена
Сообщение26.10.2016, 21:18 
Модератор


19/10/15
1196
 !  kotenok gav, предупреждение за флуд

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 14 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group