2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 44, 45, 46, 47, 48
 
 Re: об уравнении Навье-Стокса
Сообщение17.09.2016, 14:40 


11/04/16
13
Уважаемая shwedka!

Статью

T. D. Omurov, Existence and uniqueness of a solution of the nD Navier-Stokes equation, Advances and Applications in Fluid Mechanics 19(3), 589-604 (July 2016)

смотрите (бесплатно) на сайте

http://www.literatura.kg/uploads/existe ... uation.pdf

 Профиль  
                  
 
 Re: об уравнении Навье-Стокса
Сообщение17.09.2016, 20:26 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Ну, ваш Омуров делает детские ошибки.
На стр.592 написано,что предполагается,
что начальные условия и силы имеют вид (2.1),
а тогда
Цитата:
Then speed components ν
are defined by the rules

а эти 'правила' состоят в том,что все компоненты скорости пропорциональны друг другу.
Это Then не доказано.

Журнал берет 40 баксов за страницу публикации. Так что Омуров зазря 700 баксов спалил.

 Профиль  
                  
 
 Re: об уравнении Навье-Стокса
Сообщение17.09.2016, 20:39 
Заслуженный участник
Аватара пользователя


31/01/14
11348
Hogtown
Даже если б доказательство и было правильным, все равно оно пару световых лет не дотягивает до решения Проблемы Тысячелетия--доказательства бесконечной гладкости решения

(Оффтоп)

Choro Tukembaev в сообщении #1151876 писал(а):
Отогревшись в теплом навозе, воробей начал чирикать. Его тут же услышала кошка, которая вытащила птичку коготком из навоза, немного ополоснула в ближайшей лужице и съела.
shwedka в сообщении #1151989 писал(а):
Ну, ваш Омуров делает детские ошибки.

 Профиль  
                  
 
 Re: об уравнении Навье-Стокса
Сообщение18.09.2016, 05:47 


11/04/16
13
Уважаемые shwedka и Red_Herring!
В течение почти 200 лет стояли вопросы: 1) может ли УНС иметь точное решение и как его найти в замкнутой форме?; 2) когда его невозможно найти в замкнутой форме. Чтобы ответить на первый вопрос, почти все ученые в силу нелинейности классифицировали движение вязкой несжимаемой жидкости. Иначе говоря, не пренебрегая инерционными членами, когда они достаточно малы относительно силы трения (например, для ползучего движения и др.), получали линейное уравнение теплопроводности. Поэтому полученное уравнение решали в замкнутой форме, а при этом давление выражалось в конкретной виде. Но даже для средней вязкости такой подход не применим, так как инерционные члены имеют важное значение в этих процессах (Шлихтинг, Ландау и др.). Поэтому в пункте 2 конкретно указано о строгом решении УНС, т.е. каким образом можно получить, в частности, точное решение, когда в УНС сохраняются все инерционные члены. Предположение (2.1) о начальных данных закономерно для многих процессов, так как далее в пункте 3 ищется решение в общем случае без предположения (2.1). Предложенные преобразования (2.2) трансформируют уравнение (1.1) к линейному уравнению теплопроводности и дают выражения для давления в виде модифицированного уравнения типа Пуассона в форме Ландау-Липшица (Гидродинамика (1988), том VI, формула (15.11), где (15.11) имеет техническую опечатку: пропущен знак суммы), поэтому находим точное решение.
В конце теоремы 1 указано замечание, что это только частный случай. Чтобы ответить на второй вопрос с условием (1.3), а это общее условие, исходная задача исследована в пункте 3. В этом пункте вязкость достаточно мала. Преобразование (3.2) не имеет аналога в теории математики. Оно впервые было разработано Омуровым для решения 3D уравнений (см. Введение). С точки зрения математики ход изложения пунктов 2 и 3 носит рекуррентный характер. Сперва для простоты изложения рассмотрено (2.2). Далее, не предполагая (2.1), но оставив общее условие (1.3), предложено (3.2). Отметим, что исследование можно было начинать с преобразования (3.2) и в конце, как частный случай (3.2), можно было бы указать преобразование (2.2) с условием (2.1), но, как отмечено выше, автор решил идти от простого к сложному.
Многие ученые не обращали внимание, что преобразование (3.2) линеаризует инерционные члены в рамках поставленной задачи. Действительно, подставляя (3.2) и их частные производные в уравнение (1.1), причем учитывая (3.3), получим линейное уравнение теплопроводности (3.4), из которого видно, что оно впервые получено в теории УНС. Далее, получаем уравнение Пуассона (3.5) для давления в модифицированной форме Ландау-Липшица. Поэтому, исключая давление из уравнения (3.4) и проведя алгебраические операции, и используя метод Соболева, в работе Омурова получена система операторных уравнений в интегральной форме (3.7). Доказывая разрешимость (3.7), получим разрешимость исходной задачи. Математический аппарат исследования системы (3.7) в настоящее время весьма развит. Однако в начале 19 века исследование этих уравнений излагалось на доступном языке математики того времени в отличие от современной математики. Поэтому в статье Омурова предложен доступный для понимания математический аппарат на основе принципа Банаха для исследования системы (3.7).
В заключение хочу сказать. Для того, чтобы понять суть работы, надо внимательно читать её до конца, как специалисту, так как она изложена от простого к сложному, как это делали Ландау, Липшиц, Шлихтинг и др.

 Профиль  
                  
 
 Re: об уравнении Навье-Стокса
Сообщение18.09.2016, 13:28 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Вы либо не можете связно изъясняться по-русски, либо не хотите, либо не знакомы со школьной математикой. Пример:
    Choro Tukembaev в сообщении #1152075 писал(а):
    Предположение (2.1) о начальных данных закономерно для многих процессов, так как далее в пункте 3 ищется решение в общем случае без предположения (2.1).
    Союз "так как" = "потому что" (since, because of) означает следование: "$A,$ так как $B$" = $B\Rightarrow A.$ В данном случае, первая часть предложения не следует из второй, а они дополняют друг друга по смыслу.

И это только один пример, а такие несогласованности у вас в каждом предложении.

В итоге, читать и понимать вас практически невозможно.

-- 18.09.2016 13:31:49 --

You can feel free to write in English here (this forum welcomes that), though I'm afraid it could be even worse.

 Профиль  
                  
 
 Re: об уравнении Навье-Стокса
Сообщение18.09.2016, 14:25 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Choro Tukembaev в сообщении #1152075 писал(а):
Поэтому в пункте 2 конкретно указано о строгом решении УНС, т.е. каким образом можно получить, в частности, точное решение, когда в УНС сохраняются все инерционные члены. Предположение (2.1) о начальных данных закономерно для многих процессов, так как далее в пункте 3 ищется решение в общем случае без предположения (2.1).


При редакторском чтении текстов от сомнительных авторов один из методов состоит в чтении до первого ляпа.
Нет никакого смысла в чтении 3, 4, пятого пунктов,
пока не прояснено полностью состояние дел с утверждением, что при начальных условиях и силах, подчиняющихся (2.1), решение тоже будет таким же, то есть все компоненты скорости будут пропорциональны друг другу.
Когда последнее будет доказано, можно читать дальнейшие куски, но заявление г.Choro Tukembaev о том, что
Цитата:
Преобразование (3.2) не имеет аналога в теории математики

вызывает естественное ощущение бреда.

 Профиль  
                  
 
 Re: об уравнении Навье-Стокса
Сообщение18.09.2016, 18:02 


11/04/16
13
Уважаемый Munin!
Если Вы внимательно рассмотрите постановку задачи (1.1)-(1.3),то ответом решения этой задачи является результаты пункта 3 с формулами (3.1)-(3.10) с выводом теоремы 2. Эти результаты были бы достаточны для решения исходной задачи. Далее можно было бы сделать замечание: при каких условиях УНС имеет точное решение? Ответом на это замечание являются результаты пункта 2., поэтому метод 2.2 есть частный случай метода 3.2. Однако, чтобы идти от простого к сложному, второстепенная часть изложения стоит впереди для лучшего вхождения в суть метода 3.2.

 Профиль  
                  
 
 Re: об уравнении Навье-Стокса
Сообщение18.09.2016, 18:07 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Пишите по-русски или по-английски, или не пишите вовсе.

 Профиль  
                  
 
 Re: об уравнении Навье-Стокса
Сообщение18.09.2016, 18:23 


11/04/16
13
По-русски читайте здесь, а по- английски - статью.

-- 18.09.2016, 21:24 --

Уважаемая shwedka!
Где Вы видите в результатах пункта 2 решение задачи (1.1)-(1.3)? В исходной задаче начальное условие задано в виде (1.3). Результаты пункта 2 – это второстепенные результаты, связанные с начальным условием (2.1) вместо начального условия (1.3). Это означает, что исходная задача будет решена в пункте 3, а пункт 2 носит вспомогательный характер для решения задачи (1.1), (1.2), (2.1). Если Вы обладаете достаточным уровнем знаний, то можете читать с пункта 3, а пункт 2 будет замечанием, как ответ на вопрос о точном решении УНС. Автор оставил за собой право излагать от простого к сложному. Если Вы видели в какой-либо литературе преобразование (3.2), то приведите литературу.

 Профиль  
                  
 
 Re: об уравнении Навье-Стокса
Сообщение05.06.2021, 07:22 


12/09/20
36
Здравствуйте! Не являюсь специалистом в этом вопросе (да и в математике целом, скорее как хобби).

Но мне хотелось бы, чтобы мне дали ответ профессионалы в этой теме.

Если статья М.Отелбаева неверна, содержит ошибки и слишком упрощающие дело допущения - ладно.

Содержатся ли в статье какие-то важные результаты, которые:
1. предлагают новый математический аппарат.
2. новые возможности для численных вычислений.
3. содержит ли фундамент, который может быть использован для полноценного решения этой проблемы в будущем.

Благодарю.

 Профиль  
                  
 
 Re: об уравнении Навье-Стокса
Сообщение10.06.2021, 18:03 


01/07/08
836
Киев
dtn888 в сообщении #1521253 писал(а):
Не являюсь специалистом в этом вопросе (да и в математике целом, скорее как хобби).

Вот цитата А.Эйнштейна из Википедии
Цитата:
Законы математики, имеющие какое-либо отношение к реальному миру, ненадёжны; а надёжные математические законы не имеют отношения к реальному миру.
Имхо, надежды на ответ от профессионалов чистой математики или профессионалов классической физики мало. :-(
Ваши
dtn888 в сообщении #1521253 писал(а):
1. предлагают новый математический аппарат.
2. новые возможности для численных вычислений.
3. содержит ли фундамент, который может быть использован для полноценного решения этой проблемы в будущем.

строгие вопросы, могут иметь место уже после окончательного решения вопроса, скажем при получении премии. Придется ждать. :D

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 716 ]  На страницу Пред.  1 ... 44, 45, 46, 47, 48

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group