Почему люди так странно условились обозначить направление вектора угловой скорости?
Про это собственно и был первый ответ вам в этой теме. Попробую изложить попроще.
Что такое вектор? Можно считать, что вектор состоит из числа (длины вектора) и определённого направления в пространстве. Поэтому вектор удобен для описания скорости: задавая вектор скорости мы тем самым задаём величину скорости и её направление — куда именно (вдоль какой направленной прямой) тело движется.
Но как нам описать угловую скорость? Для угловой скорости нам надо задавать не
направление прямой в пространстве, а
ориентацию плоскости — той плоскости, в которой происходит вращение. Значит нам нужен некий геометрический объект вроде вектора, но "состоящий" не из числа и направления, а из числа и ориентации плоскости. Такие объекты известны — они называются бивекторы.
Бивектор уголовой скорости имеет простой физический смысл, но его сложно представить и нарисовать (по сравнению с привычным вектором). Привлечение бивекторов усложняет изучение механики, так как надо научиться производить с ними математические действия и т. п., поэтому хочется по возможности обойтись привычными векторами. И такая возможность есть. Именно, если подумать, зная вектор мы знаем и ориентацию плоскости, которой он перпеникулярен (плоскостей таких, конечно, много, но ориентированы они все одинаково). Поэтому вместо использования бивектора можно описывать угловую скорость вектором, перпендикулярным к плоскости вращения, чем и пользуются. Кроме того, оказывается, что и направление такого вектора имеет некий наглядный смысл — оно задаёт ось вращения, однако прямого физического смысла у вектора угловой скорости нет — это просто остроумный необычный способ использования вектора для задания не направления прямой, а ориентации плоскости.
-- 13.09.2016, 11:14 --Добавлю ещё, что это в определённом смысле везение, что удаётся использовать вектор для описания угловой скорости и других подобных величин. Оказывается, что в
-мерном пространстве любому
-вектору можно взаимоднозначно сопоставить
-вектор — то есть зная первый можно найти второй и наоборот. Опираясь на интуитивные преставления, можно сказать, что эти
поливекторы перпендикулярны друг другу. Таким образом, в трёхмерном пространстве вместо "сложного" бивектора угловой скорости можно изучать "перпендикуряный" ему "простой" вектор. А на плоскости с этим ещё проще: там бивектор можно заменить нуль-вектором — то есть просто числом. И если заглянуть в школьный учебник, то можно увидеть, что при изучении вращения в одной плоскости тот же момент силы там так и определён — не как вектор, а как скаляр. Иначе говоря, вместо "векторного произведения" для векторов на плоскости получается "второе скалярное" (или "псевдоскалярное", если учесть, что результат является не истинным скаляром, а псевдоскаляром). А вот при изучении четырёхмерных вращений бивектору перпендикуляерн только опять же бивектор — так что там только векторами и скалярами никак не обойтись, почему и можно говорить, что ситуация в трёхмерном и двухмерном случаях — удачное стечение обстоятельств.
-- 13.09.2016, 11:16 --Одновременно направление вектора момента силы кажется вполне логичным
Чем??? Такой же вектор, торчащий "куда-то вбок" (и по тем же причинам).
Чем угловая скорость отличается от линейной, кроме как ед изм?
Если вы поняли мой и другие ответы в этой теме, то, полагаю, вы сможете сформулировать это сами.