Рассмотрим метрику Гёделя
(1)
где
постоянная.
В статьях
http://pubs.sciepub.com/ijp/1/1/1/index.html ,
http://article.sapub.org/10.5923.j.ijtm ... 02.03.htmlпоказано, что принцип Ферма для стационарных метрик тождественен принципу экстремального интеграла энергии светоподобной частицы при ее свободном движении. Лагранжиан в этом вариационном методе берется в виде
Обобщенные импульсы имеют следующий вид
см. также
http://ummaspl.narod.ru/variat.doc .
В результате для пространства Гёделя получаем постоянные движения
Отсюда с учетом условия для вектора 4-скорости, следующего из (1), получаем
Запишем скорости как производные пространственных координат по времени в координатной системе отсчета
(2)
(3)
(4)
В принципе геодезических лагранжиан для пространства Гёделя следующий
где индексы вектора 4-скорости k,q=2,3,4 соответствуют пространственным координатам. Находя частные производные
по компонентам 4-скорости, получаем обобщенные импульсы. Для координат t,y,z они будут постоянными движения
. Вместе с условием
они дают 4 уравнения для определения 4-скоростей
, из которых находятся соответствующие принципу геодезических скорости
(5)
(6)
(7)
Скорости вдоль координат z и у, получаемые обоими методами, (3) и (6), (4) и (7) одинаковы, а скорости вдоль радиальной координаты (2) и (5) различны. Это служит решающим доказательством отличия принципа Ферма от принципа геодезических.
После того как в 1914 году Эйнштейн опубликовал общую теорию относительности, включив туда утверждение о том, что свет движется вдоль геодезических, в 19 году итальянские математики Палатини и Де-Зуани показали, что следует отличать статическое пространство-время от стационарного с неравными нулю коэффициентами
. Я не читал этих работ, но как следует из книги Паули, Теория относительности, 1921, в них предположительно содержались результаты, из которых можно сделать вывод о различии принципов геодезических и Ферма. В дальнейшем,Эйнштейн не распространял принцип геодезических на движение световых лучей. Эти результаты старались не замечать сторонники полной и всеобщей ковариантности. И в книге Паули, переизданной в 1956 году упоминание об этих работах отсутствует. Однако без особого привлечения внимания изучение принципа Ферма в криволинейном пространстве продолжалось. Румер в книге Исследования по 5-оптике писал, что принцип Ферма справедлив для стационарных пространств. Однако в общем случае применение принципа Гамильтона, излагаемое в его книге, сомнительно, поскольку он берет в качестве функции Гамильтона первую компоненту вектора скорости. Аналогичную ошибку допускает и Фок. В ЛЛ2 приведены принципы и геодезических, и Ферма, но не дается их сравнения. Наиболее подробно результаты по исследованию принципа Ферма, в том числе, и для пространства Керра приведены в V. Perlik, Gravitational Lensing from a Spacetime Perspective, Living Rev. Relativity 7, 9(2004).
Хотя в формулировке принципа экстремального интеграла энергии светоподобной частицы не требуется стационарность метрики, получаемые уравнения движения светоподобной частицы в пустом пространстве не всегда имеют решения. Вполне возможно, что существование таких решений ограничивается случаями, когда имеются решения для принципа Ферма, то есть, для комфорно-стационарных метрик.
Еще до создания теории относительности Гильберт сформулировал одну из своих проблем как в каких метриках прямые являются геодезическими. Однако эта формулировка была признана слишком расплывчатой. В рамках ОТО ее можно было бы переформулировать: в каких пространствах свет движется по геодезическим.