2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Интересное уравнение
Сообщение22.08.2016, 11:19 


09/09/15
79
Случайно в соц. сети наткнулся на уравнение, в оригинале оно выглядит так:

$2.618 \sin x - x \sin x - \cos x - 0.866 = 0$

Очевидно, что 0.866 - приближенно равно $\frac{\sqrt{3}}{2}$. Число 2.618 же не похоже ни на что...
Если решать численно, то выходят решения близкие к кратным $\pi$, вот это как раз и интересно. Еще одно решение приближенно равно $\frac{\pi}{3}$, оно исчезает, если 2.618 заменить на другое число, но решения близкие к кратным $\pi$ остаются. Я не математик, просто любитель. Мне интересно, есть ли какие то способы анализа этого уравнения кроме численных решений?

Могу выложить ссылку на оригинальное уравнение (в соц. сети google+), если модераторы позволят.

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение22.08.2016, 11:49 


20/03/14
12041
Нет, такие уравнения, как правило, только численно и решаются. Мало того, что ни одной приличной дроби, так еще и совершенно неприличное слагаемое $x\sin x$. С ним ничего аналитически Вы не сделаете.

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение22.08.2016, 11:59 
Заслуженный участник
Аватара пользователя


13/08/08
14496
Член уравнения $x\sin x$ при $x$ не близких к кратным $\pi$ по абсолютной величине намного больше любого другого (вне окрестности самой первой константы). Чтобы его утихомирить, надо синус делать маленьким. Корни, в силу непрерывности, там будут при любом значении последней константы. Отсюда и Ваше интересное наблюдение. А другого анализа я не соображу. Так что численно.

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение22.08.2016, 12:00 
Заслуженный участник
Аватара пользователя


19/12/10
1546
vlad9486 в сообщении #1145887 писал(а):
Число 2.618 же не похоже ни на что...

Золотое сечение плюс один.

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение22.08.2016, 15:36 
Заслуженный участник
Аватара пользователя


11/03/08
10029
Москва
Тень Золотого Сечения (кстати, это может быть не $1+\phi$, а $\phi^2$) наводит на мысль о каком-то геометрическом построении...

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение22.08.2016, 15:57 
Заслуженный участник
Аватара пользователя


18/05/06
13440
с Территории
Евгений Машеров в сообщении #1145944 писал(а):
(кстати, это может быть не $1+\phi$, а $\phi^2$)

Это одно и то же.

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение22.08.2016, 16:44 
Заслуженный участник
Аватара пользователя


11/03/08
10029
Москва
Разумеется. Но в условии, из которого выросло это уравнение, может быть что-то квадратненькое... ;)

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение23.08.2016, 12:23 


11/08/16
193
А вообще является ли функция обратная $\[x\sin (x)\]$ элементарной ?

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение23.08.2016, 12:33 
Заслуженный участник
Аватара пользователя


21/12/05
5932
Новосибирск
Иначе говоря, Вы спрашиваете:
vlad9486 в сообщении #1145887 писал(а):
Мне интересно, есть ли какие-то способы анализа уравнения $x\sin x = a$ для любого $a$ кроме численных решений?
:-)

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение23.08.2016, 15:35 


11/08/16
193
Нет, я говорю об элементарности функции обратной данной, обратная точно есть, но не известно является ли она элементарной?

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение23.08.2016, 15:47 


25/08/11

1074
Похоже на ф. Ламберта, но не выражается. Есть такая дурацкая теория гиперфункций Ламберта, но это просто способ обмануть дурачков и назвать старую вещь по-новому.

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение23.08.2016, 16:28 
Заслуженный участник
Аватара пользователя


21/12/05
5932
Новосибирск
sa233091 в сообщении #1146161 писал(а):
Нет, я говорю об элементарности функции обратной данной

А что такое обратная функция?

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение23.08.2016, 17:17 
Аватара пользователя


15/08/09
1465
МГУ
bot
Цитата:
А что такое обратная функция?



$f\circ f^{-1}=id$

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение23.08.2016, 18:02 
Заслуженный участник
Аватара пользователя


21/12/05
5932
Новосибирск
maxmatem, во-первых спасибо, во-вторых это неверно, в-третьих я не Вас спрашивал. Я просто хочу, чтобы ТС сопоставил определение обратной функции с его вопросом.

 Профиль  
                  
 
 Re: Интересное уравнение
Сообщение23.08.2016, 19:07 
Аватара пользователя


15/08/09
1465
МГУ
bot

(Оффтоп)

извиняюсь не прав, ляпнул не подумав.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 17 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: ИСН


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group