2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 14, 15, 16, 17, 18, 19, 20 ... 67  След.
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение09.11.2015, 20:22 


18/11/10
75
I have found the following solutions to the problem of 3x3 magic square of consecutive twins:

204860134660098317297:0, 42, 60, 84, 102, 120, 144, 162, 204
422229725797687239077:0, 42, 84, 120, 162, 204, 240, 282, 324
5646440666838544810187:0, 42, 84, 210, 252, 294, 420, 462, 504
6082062789438398013049:0, 12, 24, 240, 252, 264, 480, 492, 504

Diameter 204 is the smallest possible, while my approach cannot find minimal solution (with respect to size of primes).

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение12.11.2015, 13:49 
Заслуженный участник


20/08/14
11961
Россия, Москва
Результаты в интервале 0..2e15 по всяким разным близнецам, с простыми между и без: https://cloud.mail.ru/public/NTJC/5b9EjeWUz
Файлы с суффиксом nXX - последовательные близнецы без простых между, семёрки, восьмёрки, девятки.
Файлы с суффиксом tXX - последовательные близнецы с простыми между, по 9, 10, 11, 12.
Файл с суффиксом t20.sq - пандиагональные (и ассоциативные и Стенли) квадраты из последовательных близнецов с простыми между (это чисто ради интереса, вообще таких квадратов огромное множество, из отсутствующего файла .t16, они даже и не собирались, часть их приводил в другом месте - раз, два).
Квадрата 3х3 до 2е15 не обнаружено.

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение03.01.2016, 14:51 


10/07/15
286
Конкурс на http://primesmagicgames.altervista.org/wp/competitions/ завершен.

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение11.01.2016, 16:05 


10/07/15
286
Конкурс завершен. Результаты выложены. Но итоги не подведены.

Самой продуктивной оказалась задача 2, но с самым малым количеством очков.
Самое интересное, что еще до начала конкурса были найдены 6 решений - у Dmitriy40 5 решений и Jarek одно для k=15. В самом начале конкурса Jarek находит и для k=17. Для решений с k=18 и k=20 не доказано, что они минимальные.

В задаче 1 ( Required to find k-tuples with the minimal value p ) для k=17 найдено 29 минимумов :shock: ( зачислено 29 очков и все решения с k=17 )

Но больше всего очков отвалено в задаче 3, аж 334. Jarek устал вылавливать квадраты и сошел с дистанции. Вроде самая результативная задача, но выхлоп ничтожен. Даже непонятно, что с этой кучей квадратов делать. С ранее найденными 7 квадратами отделяют неисследованные интервалы. Осталось заквасить.

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение01.04.2016, 15:24 


18/02/15
3
При проверке одного из диапазонов кроме "стандартных" длин 16, 18 и 20 были найдены два кортежа длины 22 и один кортеж длины 24

34984922852185283: 0 26 66 74 80 96 104 126 204 206 216 236 258 278 288 290 368 390 398 414 420 428 468 494

У меня, как у новичка в проекте, такой вопрос: были ли найдены ещё кортежи длины 24, кроме минимального, записанного в энциклопедии OEIS? Или же была найдена только вторая 24-ка?

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение01.04.2016, 19:50 
Заслуженный участник


20/08/14
11961
Россия, Москва
Нет, насколько мне известно, это действительно лишь вторая 24-ка.
Точнее можно узнать у координатора проекта, кто ведёт полную статистику проверенных диапазонов, у меня есть информация лишь по старым вычислениям, до 28е15.

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение11.07.2016, 14:37 
Заслуженный участник


20/08/14
11961
Россия, Москва
Найден минимальный кортеж длиной 16 диаметром 82:
1265274635852167459: 0 4 10 12 22 24 28 30 52 54 58 60 70 72 78 82
Квадрата он не образует, но КПППЧ является.
Это существенно улучшает известное решение Врублевского, зато образующего квадрат.

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение14.07.2016, 14:35 
Заслуженный участник


20/08/14
11961
Россия, Москва
Установлено новое ограничение сверху на хитрый минимальный кортеж длины 14 - с разницей 4 между парами чисел (минимальность не гарантируется):
888895528231807: 0 4 6 10 42 46 66 70 90 94 126 130 132 136
Ранее товарищами с боинк.ру в рамках поиска КПППЧ были найдены (как часть кортежей длины 16):
43141604993553757: 0 4 60 64 120 124 126 130 132 136 192 196 252 256
75434787896617153: 0 4 30 34 54 58 120 124 186 190 210 214 240 244


Ну а минимальный такой кортеж длины 16 был найден давным давно мною, здесь, в рамках проекта поиска КПППЧ (найден в старых данных):
16197229696176289: 0 4 18 22 48 52 78 82 90 94 120 124 150 154 168 172

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение19.07.2016, 10:26 
Заслуженный участник


20/08/14
11961
Россия, Москва
Найдена минимальная КПППЧ14 диаметром 86 (минимальный) из близнецов:
2485390773085247: 0 2 24 26 30 32 42 44 54 56 60 62 84 86

Найдены ещё три КПППЧ14 с разницей 4 в парах:
1939807184636677: 0 4 6 10 42 46 66 70 90 94 126 130 132 136
2068740148286083: 0 4 24 28 30 34 90 94 150 154 156 160 180 184
3488875159133317: 0 4 6 10 42 46 66 70 90 94 126 130 132 136


Кроме того, найдены ещё три КПППЧ16 диаметром 82 (минимальный):
1864684145654713699: 0 4 10 12 18 28 30 40 42 52 54 64 70 72 78 82
2822394042617489359: 0 4 12 18 22 28 34 40 42 48 54 60 64 70 78 82
4037302205296237309: 0 4 12 18 22 28 34 40 42 48 54 60 64 70 78 82

Квадрата они не образуют.

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение20.12.2016, 06:29 
Заслуженный участник


20/08/14
11961
Россия, Москва
Dmitriy40 в сообщении #1070606 писал(а):
Нашлась первая и неповторимая "чистая" симметричная семёрка из близнецов, она же КПППЧ длины 14:
n=14, 1855418882807417: 0 2 12 14 30 32 72 74 114 116 132 134 144 146
После длительных поисков нашлась минимальная КПППЧ16 диаметром 116 (минимальный) из близнецов:
n=16, 2119293064326658975367: 0 2 30 32 42 44 54 56 60 62 72 74 84 86 114 116

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение17.02.2017, 09:53 
Аватара пользователя


26/09/09
95
hi,

maybe someone will like this Boinc project: http://inferia.ru/ that is relevant to this topic.
Actually it is testing the software.

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение17.02.2017, 10:34 
Заслуженный участник
Аватара пользователя


19/12/10
1546
ice00 в сообщении #1193298 писал(а):
that is relevant to this topic

Этот проект создан на основе моей программы поиска КПППЧ, так что да — релевантный. :D

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение04.03.2017, 23:04 


18/02/15
3
Цитата:
hi,
maybe someone will like this Boinc project: http://inferia.ru/ that is relevant to this topic.
Actually it is testing the software.

Проект сменил адрес. Теперь он доступен вот здесь: http://stop.inferia.ru
Адрес формы регистрации.
http://stop.inferia.ru/create_account_form.php
Инвайт код: waterworld

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение20.03.2017, 15:55 


10/07/15
286
В проекте STOP@Home выложены первые результаты, на основе которых готова корректировка A256234 ( ждет утверждения )

 Профиль  
                  
 
 Re: Симметричные кортежи из последовательных простых чисел
Сообщение22.03.2017, 17:25 


10/07/15
286
В проекте STOP@Home новая находка. Найдена 17ка - кандидат на минимальную.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 1001 ]  На страницу Пред.  1 ... 14, 15, 16, 17, 18, 19, 20 ... 67  След.

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: gris


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group