Linkey нигде не говорил, будто греки не знали решение этого "парадокса".
Любому современному человеку совершенно очевидно, что это число конечно. А древнему греку это объяснить мы бы не смогли. Греков удивляло то, как вообще бесконечная сумма конечных чисел может быть конечной.
wikipedia писал(а):
Aristotle (384 BC−322 BC) remarked that as the distance decreases, the time needed to cover those distances also decreases, so that the time needed also becomes increasingly small. Aristotle also distinguished "things infinite in respect of divisibility" (such as a unit of space that can be mentally divided into ever smaller units while remaining spatially the same) from things (or distances) that are infinite in extension ("with respect to their extremities"). Aristotle's objection to the arrow paradox was that "Time is not composed of indivisible nows any more than any other magnitude is composed of indivisibles.