2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Существует ли "правильная" арифметика?
Сообщение20.02.2016, 03:34 
Аватара пользователя
Вопрос в топике несколько заковырист, но объяснение у него простое:
Общепринятая числовая ось из положительных и отрицательных чисел и нуля, дополненная стандартным набором из четырёх операций (сводятся к двум - сложения и умножения), не является множеством равноправных чисел. Ноль в произведении стирает всю информацию об втором исходном аргументе умножения, и поведение знаков также приводит к потере информации об исходном знаке при возведении в чётную степень.
Из-за этого, как я понимаю, и происходят конфузы, типа неразрешимости в радикалах полиномов выше четвёртой степени. Вопрос прост - предпринимались ли попытки создать честную арифметику, лишённую этих недостатков, и насколько успешные? Если да - облагодетельствуйте ссылочкой на информацию, плиз. А если нет - хотелось бы узнать, почему?

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение20.02.2016, 09:46 
Уж тут выбирайте: либо в поле есть ноль со всеми своими страшными свойствами, либо нет поля. Для подробностей о том, почему других альтернатив нет, см. учебник алгебры.

(Оффтоп)

Humanoid в сообщении #1100716 писал(а):
(сводятся к двум - сложения и умножения)
Это смотря что считать сведением.

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение20.02.2016, 16:24 
Присмотритесь к барицентрической системе координат с центром тяжести в нуле декартовой. "Жертва", одна лишняя координата в любой мерности. Выигрыш, работа с положением точек, а не с первой разностью.

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение20.02.2016, 21:30 
Panfilov в сообщении #1100797 писал(а):
а не с первой разностью
Стоит напомнить, что системы координат в общем случае ни с какими разностями и не связаны. Это просто (желательно непрерывные или большего порядка гладкости) отображения из $\mathbb R^n$ в интересующее множество. То, что аффинные системы координат предоставляют простой способ вычислять координаты векторов, как-нибудь связанных с интересующими точками, во-первых, можно просто игнорировать, а во-вторых, это, наоборот, плюс. А в-третьих, предложение совершенно не в тему, хотя и не удивлюсь, если автор темы так не посчитает.

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение20.02.2016, 21:50 
Аватара пользователя
arseniiv в сообщении #1100739 писал(а):
Уж тут выбирайте: либо в поле есть ноль со всеми своими страшными свойствами, либо нет поля. Для подробностей о том, почему других альтернатив нет, см. учебник алгебры.

Прочитал очень много учебников алгебры, нигде не нашёл подробностей, почему других альтернатив нет.

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение20.02.2016, 22:14 
Аватара пользователя
Л. С. Понтрягин "Обобщения чисел" не об этом?

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение20.02.2016, 22:40 
kp9r4d в сообщении #1100855 писал(а):
Прочитал очень много учебников алгебры, нигде не нашёл подробностей, почему других альтернатив нет.
Ну, по определению поля. $0x = (0+0)x = 0x + 0x \Rightarrow 0 = 0x$, т. к. по сложению поле группа. От дистрибутивности отказываться не хочется. Если теперь предложить обратимость нуля, $1 = 0'0 = 0'(0x) = (0'0)x = x$, и в поле один элемент. Скорее всего, вы имели в виду что-то другое, но я имел в виду это. Ассоциативность умножения и дистрибутивность выкидывать как-то не хочется.

-- Вс фев 21, 2016 00:40:55 --

Какие ещё можно требования из определения поля попробовать выкинуть?

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение20.02.2016, 23:14 
Humanoid в сообщении #1100716 писал(а):
Вопрос в топике несколько заковырист, но объяснение у него простое:

Назад, в историю. Считали на пальцах, камешках, палочках и т. д.. Не было 0 и знаков. Все запоминалось в "поле".

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение21.02.2016, 00:23 
Аватара пользователя
Ну конечно же существует "правильная и честная" арифметика. Там есть только одно число "ноль", оно же "единица". :D

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение21.02.2016, 00:49 
Если выкинуть 0, то придется все уравнения выкинуть, а вместе с ними почти всю математику. Наверное, только теория вероятностей и останется. Даже рассуждать в привычном смысле невозможно будет типа А есть А. Числа исчезнут и математические структуры типа полей.

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение21.02.2016, 00:54 
Аватара пользователя
zt09 в сообщении #1100903 писал(а):
Если выкинуть 0, то [...] Наверное, только теория вероятности и останется.
Причём, видимо, без событий с вероятностью ноль! Всё в мире будет возможно!

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение21.02.2016, 08:46 

(Тема удивительно притягивает феерию)

zt09 в сообщении #1100903 писал(а):
Числа исчезнут и математические структуры типа полей.
Кошмар! Нужно немедленно создавать Орден Сохранения Мыслей 0 Нуле, а то вдруг он исчезнет и утянет за собой всю математику! :o

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение21.02.2016, 10:07 
Аватара пользователя
arseniiv в сообщении #1100928 писал(а):
Кошмар! Нужно немедленно создавать Орден Сохранения Мыслей 0 Нуле, а то вдруг он исчезнет и утянет за собой всю математику!
Не исчезнет. После исчезновения последнего нуля в мире останется ровно нуль нулей, так что все будет в порядке.

 
 
 
 Re: Существует ли "правильная" арифметика?
Сообщение21.02.2016, 14:10 
Anton_Peplov в сообщении #1100934 писал(а):
После исчезновения последнего нуля в мире останется ровно нуль нулей

Это утверждения можете строго доказать?
Прежде чем такую "глубокую мысль" утверждать, Вам следовало прочесть афоризм
provincialka в сообщении #1100907 писал(а):
Причём, видимо, без событий с вероятностью ноль! Всё в мире будет возможно!

 
 
 
 Posted automatically
Сообщение21.02.2016, 14:14 
 i  Тема перемещена из форума «Дискуссионные темы (М)» в форум «Пургаторий (М)»
Причина переноса: конечно, можно в "Юмор", но уже не смешно.

 
 
 [ Сообщений: 16 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group