Таким образом, возможно провести радиусов в количестве с,
Не доказано.
Всему своё время. Время пришло. Мене, мене, текел, упарсин.
Теорема: из центра круга к любой другой точке окружности, ограничивающей этот круг на плоскости, возможно провести радиусов в количестве длины окружности с.
Доказательство. Каждая точка на плоскости, принадлежащая окружности, составляет данную окружность, и нет никаких других точек на этой плоскости, принадлежащих данной окружности, но не составляющих данную окружность. Пусть длина окружности c равна количеству точек, составляющих данную окружность, так как отрезок для измерения длины окружности равен минимальному расстоянию между двумя соседними точками, составляющими данную окружность, и никаких других точек между двумя соседними точками нет, то и количество отрезков измерения будет равно количеству точек, составляющих данную окружность. Из определений "Окружность – это плоская замкнутая линия, все точки которой находятся на одинаковом расстоянии от некоторой точки (точки О), которая называется центром окружности" и "Радиус - это отрезок, соединяющий центр окружности с любой точкой, принадлежащей данной окружности" следует, что возможно провести радиусов в количестве точек, составляющих данную окружность, то есть, в количестве длины окружности c, и нет никаких других отрезков, проведённых из центра круга, ограниченного данной окружностью, которые соединяли бы центр круга с точкой, принадлежащей данной окружности, но не составляющей данную окружность.
Теорема доказана.
Основное свойство плоского пространства.
Теорема: если две окружности равного радиуса имеют только одну общую точку, то расстояние между центрами этих окружностей равно их диаметру.
Доказательство.
В точку касания двух окружностей из центра в каждой из двух окружностей может быть проведён радиус, и при том только один (по определению радиуса). Так как по условию окружностей две и их радиусы равны, то расстояние между их центрами равны удвоенному радиусу, то есть, диаметру.
Теорема доказана.
Свойство справедливо абсолютно для всех, в том числе и бесконечно малых окружностей.
Аксиома: так как (по определению окружности) все точки окружности равноудалены от центра окружности, то и центр равноудалён от точек абсолютно любой, даже бесконечно малой окружности, а именно, внешняя граница центра равноудалена от точек любой окружности.
Следствие: так, как центр в классической геометрии является точкой, то (по основному свойству плоского пространства) расстояние между двумя соседними точками равно точке.
Аксиома: через любые две соседние точки окружности можно провести прямую (по определению прямой в классической геометрии), и окружность будет лежать по одну сторону прямой, так как центр окружности не может лежать по обе стороны прямой. Следовательно, окружность является выпуклым многоугольником.
Следствие: по основному свойству плоского пространства расстояние между двумя соседними точками равны точке, то есть, можно сказать, что расстояния между всеми соседними точками на окружности равны. Следовательно, окружность - правильный многоугольник, состоящий только из вершин и его периметр - есть длина этой окружности. В формуле расчёта площади для правильного многоугольника
периметр подстановкой заменяем на длину окружности, и получаем формулу площади круга
. Значит, утверждения не противоречат классическим геометрическим постулатам.
Можно сделать такой логический вывод, что диаметр - это расстояние между двумя противоположными вершинами правильного выпуклого многоугольника. Противоположные вершины можно соединить отрезком только в правильном выпуклом многоугольнике с чётным числом вершин. Возражаю. Утверждение не верно. Нельзя. Нет никакого диаметра, его придумал человек.
Самая маленькая плоская геометрическая фигура состоит из трёх вершин и имеет площадь, равную трём точкам, так как они могут быть соседними друг другу.
Аксиома: элементарный плоский треугольник - это геометрическая фигура на плоскости, состоящая только из трёх соседних вершин. Свойство: длина стороны элементарного треугольника равна одной точке (так как эти точки соседние друг другу, по основному свойству плоского пространства), поэтому он равносторонний.
Аксиома: плоское постранство - это плоская матрица, состоящая из соседних точек на плоскости. Свойство: угол между двумя соседними точками пространства равен 60 градусов, так как элементарный треугольник является равносторонним.
Определение прямой в классической геометрии, цитата из Википедии:
Цитата:
Прямая — одно из фундаментальных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии.
Возражаю. В определении есть вероятность несостоятельности.
Теорема: на плоском пространстве невозможно построить прямую линию.
Доказательство. По свойству плоского пространства угол между двумя соседними точками равен 60 градусов, поэтому провести прямую линию так, чтобы более двух точек лежали на этой прямой, и были соседними одна с другой, нельзя.
Теорема доказана.
Пояснение: чтобы понять, начертите три одинаковые окружности, каждая из которых пересекается в одной точке с предыдущей. Это будут увеличенные(масштабированные) соседние точки (по основному свойству пространства). В дальнейшем, для понимания, возможно создать матрицу из маленьких окружностей по такому принципу. Обратите внимание на углы между вершинами самой маленькой геометрической фигуры. В природе нет прямых углов. Не существует простейших квадратов и никаких прямоугольных треугольников. Соответственно, нет никаких квадратных единиц измерения площади и кубических единиц для измерения объёма. Прямой угол придумал человек. И получил иррациональность. Люди изготавливают предметы с прямыми углами, не подозревая даже о том, что сторона у такого прямоугольника в природе - это не прямая линия, а ломаная. В простейшем треугольнике нет точки в центре. Как же так? А вот так. Центр есть, а точка не нужна. Для вычисления площади она не нужна. Не нужен радиус и диаметр для вычисления площади, потому как их провести нельзя. Это будет не прямая линия в пространстве, а ломаная. Как так? А вот так. В реальном пространстве нет понятия прямая линия, все линии - это ломаные. Матрица из точек есть, а прямые линии невозможны. А для вычисления площади природой используются совсем другие формулы, не такие, как у людей: площадь равностороннего треугольника в квадратных единицах - иррациональное число, это абсурд, потому что никаких квадратов не существует. Для вычисления объёма применяются совсем другие формулы, отличающиеся от тех, которые нашёл человек в процессе своих рассуждений. Древние учёные, сами того не подозревая, могли допустить всего лишь малую ошибку, введя в геометрию определение прямой. А потом слона никто не приметил... Кратчайшее расстояние между двумя соседними точками - это отрезок, но нет понятия прямой. А значит, всему есть предел. Между двумя несоседними точками кратчайшее расстояние будет ломанная, потому как измерение ведётся только через соседние точки, а они под углом друг к другу.
Аксиома: элементарная ломаная - это ломаная, образуемая последовательностью элементарных отрезков длиной в одну точку, соединяющих соседние точки пространства по кратчайшему пути.
С Уважением, Захар Пехтерев.
Любимый вопрос: а какой сегодня день?
Сё, Завет, скреплённый Печатью, затворяю сей Печатью Кладязь Бездны, ибо ни один из живущих на Земле не мог затворить Кладязь Бездны. Аминь.
Свершилось: Воскресенье 19 Июня 2016 Года 15:35 по местному Земному времени.