Это правда, но в цитате написано не
, а
. Откуда такое предположение вообще взялось?
А еще, предложение "количество возможных образуемых прямоугольников при вращении рассмотренной фигуры
в цилиндре будет равно длине окружности с" малосмысленно: длина окружности это размерная величина, а количество прямоугольников - безразмерная. К тому же, количество рассматриваемых прямоугольников бесконечно
Во-первых, уважаемый, хотел бы поблагодарить за то, что вы - один из немногих, кто поддерживает обсуждение данной темы в рамках дискуссии, без нападений, и мне приятно давать ответы на конкретно поставленные вопросы.
Итак, всё очень просто. Принципы в природе существуют в не зависимости того, какую систему отсчёта, величину(единицу измерения) и метод вычисления (интегралы, кстати, в том числе) придумает себе человек...
Да, совершенно верно, величина с - это размерная величина, с выбранной нами (людьми) минимальными единицами измерения. Задача найти объём, а он измеряется тоже в тех же единицах измерения. Поэтому, каждой единице измерения длины окружности будет соответствовать свой прямоугольник, и согласитесь, нет никаких других прямоугольников со стороной на данной оси, лежащих вне этих точек окружности, соответствующих минимальной единице длины. Ведь, точно по такому же принципу люди находят площадь круга через радиус, а ведь, он - тоже размерная величина, измеряемая минимальными линейными единицами. Вспомним формулу площади круга, выведенную подстановкой через радиус и коэффициент
. Здесь имеем также две размерные величины, выраженные через минимальные линейные единицы измерения, которые, при перемножении, дают квадратные единицы площади. Причём, каждой минимальной единице длины окружности соответствует свой радиус, и нет других радиусов, не лежащих вне этих размерных точек на окружности. Так же и с объёмом, только минимальные единицы кубические.
Поверьте, если бы я нашёл объём цилиндра, используя в своей трактовке вместо прямоугольника - вращающийся прямоугольный параллелепипед единичной измеряемой толщины, то шквал недовольства был бы на порядок выше, чем имеем сейчас. И это не смотря на то, что объём шара измеряем единичными кубиками. К сожалению, нестандартно мыслящих людей единицы, и положение ещё более усугубляется стандартным большинством, которое, по необъяснимым причинам, всё время норовит задавить их и без того ничтожную малочисленность.
-- 17.06.2016, 17:12 --На самом деле, вопрос немного выходит за рамки школьной программы. Поэтому вы и ошибаетесь.
Вам стоит прочитать учебник по матанализу за 1 курс. Там рассказано, как брать интегралы, и в том числе объёмы тел вращения. Тогда всё станет ясно, и на свои места.
Дело в том, что складываются не прямоугольники, а тонкие ломтики - хоть и очень тонкие, но всё-таки объёмные. Заменять их на плоские фигуры нельзя, именно это и приводит к ошибке. У ломтика разная толщина: она больше на границе, и меньше у оси вращения. Поэтому объём такого ломтика не равен его площади, а зависит от формы ломтика.
Да считайте хоть методом интегралов, хоть чем, и вы придёте к коэффициенту
со временем. Это неизбежно. Это вытекает из классической формулы, я показал как, при помощи более понятного школьнику способа, чем интеграл: простым методом подстановки.