Уважаемые участники дискуссии.
Выражаю вам свою признательность за интерес к ней. Обращаю ваше внимание на саму доску Гальтона, на ее разновидности.
Широко известна доска Гальтона в виде «треугольника». Ссылку на видео с изображением треугольной доски, сделанной из конструктора «лего», дает
Yu_K. Данное видео ничуть не хуже тех видео, что есть по данной теме в интернете. Совершенно непонятно почему данная ссылка объявлена «вне темы».
Участник
Aritaborian дал ссылку на Вольфрамовский сайт с демонстрациями, где на данный момент лежат 6 демонстраций, которые сайт объединил по критерию «доска Гальтона». Если
Aritaborian не будет возражать, то из 6-ти демонстраций, представленных на сайте, я выберу одну, наиболее типовую, которую можно найти по
http://demonstrations.wolfram.com/IdealizedGaltonBoard/Однако и здесь представлена треугольная доска Гальтона.
Значительно реже встречается доска Гальтона в виде «домика». Мне известно только одно изображение такой доски. Оно приведено на
рисунке Гальтона 1889 года.В настоящее время меня интересует доска Гальтона в виде домика.
Если треугольная доска Гальтона характеризуется одним параметром – числом накопителей-«карманов», куда попадают шарики в результате блуждания, вызванного прохождением через сетку «гвоздиков», то доска Гальтона в виде домика характеризуется еще одним показателем.
Александрович назвал его «высотой доски»,
arseniiv – «числом уровней на доске»,
svv –«число уровней гвоздиков». Попробую определить данный параметр и я. Как мне кажется, больше подходит определение «число рядов с гвоздиками».
Для удобства обозначим число карманов-накопителей за N, а число рядов с гвоздиками за K.
Известно, что при соотношении
доска Гальтона дает биномиальное распределение.
Известно, что при
, распределение, полученное в результате падения шариков, будет отличаться от биномиального. На своем знаменитом рисунке (N=13, K=24) Гальтон пытался компенсировать данное отличие «сужением» области карманов-накопителей (изображение3).
Известно, что существует решение, что при
распределение, полученное при падении шариков будет стремиться к равномерному. Если быть более точным, то при Гальтоновском числе карманов (N=13) , при
вероятность попадания шарика в крайние карманы с номерами 1 и 13 будет примерно 0,05 , а вероятность попадания во все остальные карманы (с номерами от 2 до 12) составит что-то около 0,08.
Если это так, то алгоритмы
svv и
arseniiv легко подтвердят это. Однако, я прогнозирую, что ниже значения 0,11 для центрального, седьмого кармана, им не удастся опуститься. По моим прогнозам значение 0,11 в центральном кармане можно получить при K=42.
Уважаемые
svv и
arseniiv. Выражаю вам признательность за выложенный код. Думаю, что информация была бы более интересной, если бы вы дополнили свои алгоритмы небольшим расчетом.