Хорошо, пусть образ. Мне нравится.
А вот еще вопрос. Традиционно функцией называется упорядоченная тройка "область определения, область значений, график". Так это, например, в книжке
Виро, Иванов, Нецветаев, Харламов. Элементарная топология. М.: МЦНМО, 2012 на с. 57. Да и в книге
Энгелькинг. Общая топология. М.: Мир, 1986, на с. 18, хотя в формулировке определения функция отождествляется со своим графиком (подмножеством декартова произведения
, обладающим известными свойствами), далее все же проводится различие между отображениями "в" и "на", т.е. учитывается не только образ, но и объемлющая его область значений. Таким образом, согласно традиционному определению функция имеет только одну область значений т.е. две функции с совпадающим графиком, но разной областью значений - различные функции. Т.е. функции
и
- разные функции (в частности, вторая - сюръекция, а первая - нет). Но, тем не менее, две эти "различные" функции совпадают всюду в области определения. Есть ли для этого "совпадают всюду в области определения" короткий общепринятый термин? Я бы назвал такие функции эквивалентными, тем более что такое совпадение - отношение эквивалентности, но этот термин уже занят в теории меры.
А есть ли короткий и общепринятый термин вместо "сокращение функции до сюръекции с той же областью определения" (т.е. для сокращения
)?