Можно ли для динамической системы с двумерным фазовым пространством в общем виде:
каким либо образом получить уравнения для сепаратрис, если известны координаты сёдел (в случае если они есть, разумеется). Неявная форма или даже дифференциальное уравнение — всё подойдёт.
С одной стороны, кажется, что сепаратриса в плане формул ничем не отличается от любой другой фазовой кривой, даже дифференциальное уравнение то же самое, но если я захочу посчитать (численным интегрированием, например), то какие взять начальные условия? Самое седло начальной точкой быть не может, если чуть-чуть отойти в направлении, которое подсказывает линеаризация в окрестности седла и честное решение, то нет гарантии, что маленькая ошибка не приведёт к тому, что вычисляемая фазовая траектория "слезет" с реальной сепаратрисы.
Можно, конечно, варьировать начальные условия и, в зависимости от того, в какую сторону "соскакивает" вычисляемая траектория, поправлять эти начальные условия. Получится что-то похожее на метод стрельбы для решения краевой задачи или задачи на собственные значения, но это не явное решение, а подгон. Интуиция подсказывает, что задачу можно переформулировать так, чтобы получить строгое явное условие и решение, только я не знаю как. В каком направлении копать?