Обе этих теории будут обладать простой непротиворечивостью (ни для какого утверждения
в них не выводимо одновременно
и
). Одна из них будет противоречива относительно общезначимости или как там это называется - в ней будет выводимо ложное утверждение.
Я правильно излагаю?
Вроде как правильно. Хотя я не понимаю, что такое "противоречие относительно общезначимости". Ясно, что в одной из теорий (мы не узнаем в какой) "будет выводимо ложное утверждение". Вот только мы не узнаем, что вывели "ложное утверждение".
Подозреваю, что в построениях "для любого свойства натуральных чисел" вот это уточнение к чему именно относится свойство (в данном случае - к натуральным числам) - обязательно.
Это вопрос синтаксиса исчисления предикатов второго порядка: Раз квантор можно ставить на переменной, обозначающей свойство, мы просто делаем это и не задаёмся такими вопросами.
Если допускать выражения вида "для любого свойства (чего угодно)", то я почти уверен, что начнутся парадоксы типа парадоксов наивной теории множеств.
Тем не менее, в самом исчислении предикатов второго порядка парадоксов пока не обнаружили.
Произвольно конструируемые свойства должны быть так же опасны, как и произвольно конструируемые множества.
Да бросьте. Свойство - это всего лишь формула языка с одной свободной объектной переменной. Чем она может быть опасна?
для таких утверждений вида "для любого свойства натуральных чисел, ..." - нужны, как минимум, натуральные числа
А Вы в курсе, что Пеано, когда задался вопросом "что такое натуральные числа", придумал пять аксиом, причём пятую аксиому он сформулировал как "других натуральных чисел не существует"? Так вот, оказалось, что эта пятая аксиома (она нынче называется "принцип математической индукции") не может быть формализована на языке логики первого порядка! На языке же логики второго порядка она формализуется так:
(большими буквами я обозначаю предикатные переменные, а маленькими - объектные переменные). Как видите, первый квантор всеобщности стоит как раз на предикатной переменной. Причём читается это именно как "для любых свойств объектов...". Разумеется, после того, как мы договоримся о том, что будем называть объекты нашей теории "натуральными числами", мы в этой фразе заменим слово "объектов", на "натуральных чисел".
Так что полноценное понятие о натуральных числах невозможно без логики второго порядка. В логике первого порядка данную аксиому заменяют схемой индукции. Однако замена оказывается неполноценной. Выражается это, в частности, в том, что в качестве модели арифметики первого порядка могут быть выбраны так называемые "нестандартные натуральные числа", которые не соответствуют нашим интуитивным представлениям о том, что такое натуральные числа.
-- Сб апр 02, 2016 22:36:28 --Чистая логика второго порядка имеет моделями множества всевозможных мощностей (здесь она не отличается от первопорядковой?), в том числе и конечные. Там-то континуум-гипотеза должна быть неверна, нет?
В "полной семантике" теория второго порядка, вроде, имеет единственную модель.
Вообще, кто сказал, что формула чистой логики второго порядка обязана иметь на всех интерпретациях одно м то же значение?
Вроде бы сама логика второго порядка. Тут я могу ошибаться. Но однозначным отличием логики второго порядка от первого является неполнота. Это значит, что существует недоказуемое общезначимое утверждение. Как оно должно трактоваться в разных интерпретациях? С одной стороны - оно недоказуемое (и неопровержимое). А с другой стороны - общезначимость как раз и есть невозможность интерпретировать его как ложное. Вот так как-то.