Случай интервала, dim=1Неравенство Пуанкаре для функции
![$ u:[a,b] \to \mathbb{R}, u(a)=0, u(b)=0, $ $ u:[a,b] \to \mathbb{R}, u(a)=0, u(b)=0, $](https://dxdy-03.korotkov.co.uk/f/e/9/9/e990045fded30bc077ff44055e7eaecf82.png)
где
![$u \in C^{1}_{0}\Big((a,b)\Big), [a,b]\subset \mathbb{R},$ $u \in C^{1}_{0}\Big((a,b)\Big), [a,b]\subset \mathbb{R},$](https://dxdy-01.korotkov.co.uk/f/4/9/e/49ed2aec2b3404f68d98d41c19cbf58f82.png)
выглядит так
Для доказательства используем формулу Ньютона-Лейбница
![$ u(t) = \underbrace{ u(a)}_{=0} + \int_{a}^{t} \Big(\frac{du}{ds}\Big) ds.$ $ u(t) = \underbrace{ u(a)}_{=0} + \int_{a}^{t} \Big(\frac{du}{ds}\Big) ds.$](https://dxdy-01.korotkov.co.uk/f/4/d/a/4daf9aa1c2be881356b4973a29e47c7e82.png)
Возводим это тождество в квадрат и интегрируем по интервалу
![$[a,b]$ $[a,b]$](https://dxdy-04.korotkov.co.uk/f/f/e/4/fe477a2781d275b4481790690fccd15f82.png)
![$$ \int_{a}^{b} u^{2}(t)dt \leqslant \int_{a}^{b} \Big( \int_{a}^{t} \Big(\frac{du}{ds}\Big) ds \Big)^{2}dt \leqslant ...$$ $$ \int_{a}^{b} u^{2}(t)dt \leqslant \int_{a}^{b} \Big( \int_{a}^{t} \Big(\frac{du}{ds}\Big) ds \Big)^{2}dt \leqslant ...$$](https://dxdy-02.korotkov.co.uk/f/9/3/6/93645e293ea602d68d2f0ac5da6964aa82.png)
Используя неравенство Коши, получаем
![$$ ... \leqslant \int_{a}^{b} (b-a) \int_{a}^{t} \Big(\frac{du}{ds}\Big) ds dt \leqslant (b-a)^{2} \int_{a}^{b} \Big(\frac{du}{ds}\Big) ds , $$ $$ ... \leqslant \int_{a}^{b} (b-a) \int_{a}^{t} \Big(\frac{du}{ds}\Big) ds dt \leqslant (b-a)^{2} \int_{a}^{b} \Big(\frac{du}{ds}\Big) ds , $$](https://dxdy-04.korotkov.co.uk/f/b/6/a/b6a1bbc58f589231de7b4e218e5390d482.png)
что и требовалось доказать.
Случай нулевой границы, dim=2В этом случае
![$\Omega \subset \mathbb{R}^{2}, \quad u : \Omega \to \mathbb{R}, \quad u(x,y)=0 \quad \forall (x,y) \in \partial \Omega. $ $\Omega \subset \mathbb{R}^{2}, \quad u : \Omega \to \mathbb{R}, \quad u(x,y)=0 \quad \forall (x,y) \in \partial \Omega. $](https://dxdy-04.korotkov.co.uk/f/f/e/1/fe17f13e927e6c99f1d1abce2fcc420282.png)
Неравенство Пуанкаре принимает вид
![$$ \int_{\Omega} \mid u(x,y) \mid ^{2} dx dy \leqslant L^{2} \int_{\Omega} \mid \nabla u(x,y) \mid ^{2}dx dy$$ $$ \int_{\Omega} \mid u(x,y) \mid ^{2} dx dy \leqslant L^{2} \int_{\Omega} \mid \nabla u(x,y) \mid ^{2}dx dy$$](https://dxdy-02.korotkov.co.uk/f/5/8/7/5876dc9f8afb1ff7a0a3cff7232af0e482.png)
Рассмотрим квадрат
![$\mathbb{Q} =[0,L] \times [0,L]$ $\mathbb{Q} =[0,L] \times [0,L]$](https://dxdy-02.korotkov.co.uk/f/d/8/b/d8bdef78491f7c9da10303e08883ecdb82.png)
,
так как любую подобласть
![$\Omega\subset \mathbb{R}^{2}$ $\Omega\subset \mathbb{R}^{2}$](https://dxdy-04.korotkov.co.uk/f/7/7/5/77517b962b4f0ecd6794f9a10bb5e0ca82.png)
можно заключить в
![$\mathbb{Q} = [0,L] \times [0,L]$ $\mathbb{Q} = [0,L] \times [0,L]$](https://dxdy-03.korotkov.co.uk/f/e/e/5/ee55a4e08735fda18bafeb7d353fcc8a82.png)
,
тривиально продолжив
Тогда
![$ u : \mathbb{Q} \to \mathbb{R},\quad u(0,y)=0 \quad \forall y, \quad u(x,0)=0 \quad \forall x$ $ u : \mathbb{Q} \to \mathbb{R},\quad u(0,y)=0 \quad \forall y, \quad u(x,0)=0 \quad \forall x$](https://dxdy-04.korotkov.co.uk/f/f/f/d/ffdd2a50b250603998ec4a5180a6d2ae82.png)
По формуле Ньютона-Лейбница
![$$ u(x,y) =\underbrace{ u(0,y)}_{=0} + \int_{0}^{x}\frac{\partial u(\xi, y)}{\partial \xi} d\xi $$ $$ u(x,y) =\underbrace{ u(0,y)}_{=0} + \int_{0}^{x}\frac{\partial u(\xi, y)}{\partial \xi} d\xi $$](https://dxdy-01.korotkov.co.uk/f/c/3/b/c3b35e6bf480d5fa91a52e81a5888a7e82.png)
Возведём обе части в квадрат и применим неравенство Коши
![$$ \mid u(x,y) \mid ^{2} = \Big( \int_{0}^{x}\frac{\partial u(\xi, y)}{\partial \xi} d\xi \Big)^{2} \leqslant \int_{0}^{x}d\xi \int_{0}^{x} \Big| \frac{\partial u(\xi, y)}{\partial \xi}\Big| ^{2} d\xi \leqslant L \int_{0}^{L} \Big| \frac{\partial u(\xi, y)}{\partial \xi}\Big| ^{2} d\xi $$ $$ \mid u(x,y) \mid ^{2} = \Big( \int_{0}^{x}\frac{\partial u(\xi, y)}{\partial \xi} d\xi \Big)^{2} \leqslant \int_{0}^{x}d\xi \int_{0}^{x} \Big| \frac{\partial u(\xi, y)}{\partial \xi}\Big| ^{2} d\xi \leqslant L \int_{0}^{L} \Big| \frac{\partial u(\xi, y)}{\partial \xi}\Big| ^{2} d\xi $$](https://dxdy-02.korotkov.co.uk/f/1/7/6/1768f7e3d5f9f068c1c78523cb11a98082.png)
Проинтегрировав это неравенство по всему квадрату, получим
![$$ \int_{0}^{L}\int_{0}^{L} \mid u(x,y) \mid ^{2} dx dy \leqslant L \int_{0}^{L} dx \int_{0}^{L} \int_{0}^{L} \Big| \frac{\partial u(\xi, y)}{\partial \xi}\Big| ^{2} d\xi dy \leqslant L^{2} \int_{0}^{L}\int_{0}^{L} \Big|\frac{\partial u(x, y)}{\partial x}\Big| ^{2} dx dy$$ $$ \int_{0}^{L}\int_{0}^{L} \mid u(x,y) \mid ^{2} dx dy \leqslant L \int_{0}^{L} dx \int_{0}^{L} \int_{0}^{L} \Big| \frac{\partial u(\xi, y)}{\partial \xi}\Big| ^{2} d\xi dy \leqslant L^{2} \int_{0}^{L}\int_{0}^{L} \Big|\frac{\partial u(x, y)}{\partial x}\Big| ^{2} dx dy$$](https://dxdy-01.korotkov.co.uk/f/8/b/c/8bce19c4a154b9a6053c00dfdf3e267682.png)
Совершенно аналогично получаем такое же неравенство для частной производной по
![$y$ $y$](https://dxdy-02.korotkov.co.uk/f/d/e/c/deceeaf6940a8c7a5a02373728002b0f82.png)
![$$ \int_{0}^{L}\int_{0}^{L} \mid u(x,y) \mid ^{2} dx dy \leqslant L^{2} \int_{0}^{L}\int_{0}^{L}\Big|\frac{\partial u(x, y)}{\partial y}\Big| ^{2} dx dy$$ $$ \int_{0}^{L}\int_{0}^{L} \mid u(x,y) \mid ^{2} dx dy \leqslant L^{2} \int_{0}^{L}\int_{0}^{L}\Big|\frac{\partial u(x, y)}{\partial y}\Big| ^{2} dx dy$$](https://dxdy-04.korotkov.co.uk/f/b/9/9/b998dbb8014ae04bb12ab3b4fe736c7182.png)
Складывая оба неравенства и отбрасывая фактор 2, получаем желаемое
![$$ \int_{0}^{L}\int_{0}^{L} \mid u(x,y) \mid ^{2} dx dy \leqslant L^{2} \int_{0}^{L}\int_{0}^{L} \mid \nabla u(x,y) \mid ^{2} dx dy$$ $$ \int_{0}^{L}\int_{0}^{L} \mid u(x,y) \mid ^{2} dx dy \leqslant L^{2} \int_{0}^{L}\int_{0}^{L} \mid \nabla u(x,y) \mid ^{2} dx dy$$](https://dxdy-04.korotkov.co.uk/f/f/b/d/fbdb5d375d2b7210360d55d2d85f03c082.png)
что и требовалось доказать.
Случай ненулевой границы, dim=2Рассмотрим случай, когда не весь квадрат имеет ненулевую границу, а только один её отрезок. Пусть для определённости это будет
![$ [0, x_1].$ $ [0, x_1].$](https://dxdy-04.korotkov.co.uk/f/7/e/3/7e3394ef5e2b89aa5166ec89da21ca1582.png)
Для всех
![$x$ $x$](https://dxdy-04.korotkov.co.uk/f/3/3/2/332cc365a4987aacce0ead01b8bdcc0b82.png)
из отрезка
![$ [0, x_1] $ $ [0, x_1] $](https://dxdy-04.korotkov.co.uk/f/7/e/8/7e8b900db898346e6bf77680982ab2dc82.png)
пусть
![$ u(x,0) = 0.$ $ u(x,0) = 0.$](https://dxdy-04.korotkov.co.uk/f/3/2/7/327810212615dc459d7949ec68f8ae6482.png)
Применим формулу Ньютона- Лейбница при условии
![$$ u(x,y) - \underbrace{u(\tilde{x}, 0)}_{=0} = \int_{\tilde{x}}^{x} \frac{\partial u(\xi, y)}{\partial \xi}d\xi + \int_{0}^{y} \frac{\partial u(\tilde{x}, \eta)}{\partial \eta}d\eta $$ $$ u(x,y) - \underbrace{u(\tilde{x}, 0)}_{=0} = \int_{\tilde{x}}^{x} \frac{\partial u(\xi, y)}{\partial \xi}d\xi + \int_{0}^{y} \frac{\partial u(\tilde{x}, \eta)}{\partial \eta}d\eta $$](https://dxdy-03.korotkov.co.uk/f/2/8/4/2844ffbf807584ea643aa584d1cdacec82.png)
Возведём обе части в квадрат
![$$ \mid u(x,y) \mid ^{2} = \Big( \int_{\tilde{x}}^{x} \frac{\partial u(\xi, y)}{\partial \xi}d\xi + \int_{0}^{y}\frac{\partial u(\tilde{x}, \eta)}{\partial \eta}d\eta \Big)^{2} \underbrace{\quad \leqslant \quad}_{2ab \leqslant a^2 + b^2} 2 \Big( \int_{\tilde{x}}^{x} \frac{\partial u(\xi, y)}{\partial \xi}d\xi \Big)^{2} + 2\Big( \int_{0}^{y} \frac{\partial u(\tilde{x}, \eta)}{\partial \eta}d\eta \Big)^{2} \leqslant ...$$ $$ \mid u(x,y) \mid ^{2} = \Big( \int_{\tilde{x}}^{x} \frac{\partial u(\xi, y)}{\partial \xi}d\xi + \int_{0}^{y}\frac{\partial u(\tilde{x}, \eta)}{\partial \eta}d\eta \Big)^{2} \underbrace{\quad \leqslant \quad}_{2ab \leqslant a^2 + b^2} 2 \Big( \int_{\tilde{x}}^{x} \frac{\partial u(\xi, y)}{\partial \xi}d\xi \Big)^{2} + 2\Big( \int_{0}^{y} \frac{\partial u(\tilde{x}, \eta)}{\partial \eta}d\eta \Big)^{2} \leqslant ...$$](https://dxdy-01.korotkov.co.uk/f/8/c/d/8cd027f4e788b3df1c6d43f5b60f6d2c82.png)
С помощью неравенства Коши и увеличив область интегрирования, получим
![$$ \mid u(x,y) \mid ^{2} \leqslant 2L \int_{0}^{L} \Big|\frac{\partial u(\xi, y)}{\partial \xi}\Big|^{2}d\xi + 2L \int_{0}^{L} \Big| \frac{\partial u(\tilde{x}, \eta)}{\partial \eta}\Big|^{2}d\eta$$ $$ \mid u(x,y) \mid ^{2} \leqslant 2L \int_{0}^{L} \Big|\frac{\partial u(\xi, y)}{\partial \xi}\Big|^{2}d\xi + 2L \int_{0}^{L} \Big| \frac{\partial u(\tilde{x}, \eta)}{\partial \eta}\Big|^{2}d\eta$$](https://dxdy-02.korotkov.co.uk/f/9/0/b/90bccc6da59b589d765b44bf026b036382.png)
Позволим теперь точке
![$(x,y)$ $(x,y)$](https://dxdy-04.korotkov.co.uk/f/7/3/9/7392a8cd69b275fa1798ef94c839d2e082.png)
быть любой и
проинтегрируем неравенство по всей области
![$ \mathbb{Q}$ $ \mathbb{Q}$](https://dxdy-02.korotkov.co.uk/f/5/7/0/570963574a5911b7a61dfa1c6344793082.png)
:
![$$ \int_{\mathbb{Q}} \mid u(x,y) \mid ^{2} dx dy \leqslant 2L \int_{0}^{L}dx \int\!\!\!\int_{\mathbb{Q}}\Big|\frac{\partial u(\xi, y)}{\partial \xi}\Big|^{2}d\xi dy + 2L \int_{0}^{L}dy \int\!\!\!\int_{\mathbb{Q}} \Big| \frac{\partial u(\tilde{x}, \eta)}{\partial \eta}\Big|^{2} dx d\eta =$$ $$ \int_{\mathbb{Q}} \mid u(x,y) \mid ^{2} dx dy \leqslant 2L \int_{0}^{L}dx \int\!\!\!\int_{\mathbb{Q}}\Big|\frac{\partial u(\xi, y)}{\partial \xi}\Big|^{2}d\xi dy + 2L \int_{0}^{L}dy \int\!\!\!\int_{\mathbb{Q}} \Big| \frac{\partial u(\tilde{x}, \eta)}{\partial \eta}\Big|^{2} dx d\eta =$$](https://dxdy-02.korotkov.co.uk/f/1/a/6/1a6e019a63156f39eb4e82de3e1b9c6d82.png)
![$$ 2L^2 \int\!\!\!\int_{\mathbb{Q}} \Big|\frac{\partial u(x, y)}{\partial x}\Big|^{2}dx dy + 2L^2 \int\!\!\!\int_{\mathbb{Q}} \Big| \frac{\partial u(x, y)}{\partial y}\Big|^{2} dx dy $$ $$ 2L^2 \int\!\!\!\int_{\mathbb{Q}} \Big|\frac{\partial u(x, y)}{\partial x}\Big|^{2}dx dy + 2L^2 \int\!\!\!\int_{\mathbb{Q}} \Big| \frac{\partial u(x, y)}{\partial y}\Big|^{2} dx dy $$](https://dxdy-01.korotkov.co.uk/f/c/e/0/ce0aaa564a5bef4ac1ad6a75caa067c282.png)
что и требовалось доказать.
Вопрос 1:Правомочен ли переход от
![$\tilde{x} $ $\tilde{x} $](https://dxdy-03.korotkov.co.uk/f/6/9/d/69dbae6f49ba77bc6a507b28e596645b82.png)
к
![$x $ $x $](https://dxdy-02.korotkov.co.uk/f/d/b/3/db396b866f2265a20cb79edf7120e41282.png)
в последней строчке доказательства?
Вопрос 2: Почему неравенство Пуанкаре неверно в случае, если функция
![$u(x,y)$ $u(x,y)$](https://dxdy-02.korotkov.co.uk/f/5/4/9/549e2305f7f7b318e4f65b3523cabb0682.png)
обращается в ноль на границе только в одной точке?