2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4
 
 Re: Что же это - неопределенный интеграл?
Сообщение26.02.2016, 06:57 
Заслуженный участник
Аватара пользователя


11/12/05
10123
На предыдущей странице я выложил небольшой кусочек отсканированной книги Куранта. Который прочёл A_Nikolaev и задал вопрос, на который я не подумав дал ответ, который тут же опровергли в доме который построил Джек.

Собственно, причиной моего ответа "не подумав" была уверенность, что все разнообразные определения неопред. интеграла должны быть по большому счёту эквивалентны. Уж во всяком случае в той части, которая касается "$+C$". Не думаю, что на момент издания учебника (1967), Курант или редколлегия не знали о фактах, которые привел здесь RIP, или хотя бы о том же примере с $\frac {x^2}{2}+1$

Поэтому возникает вопрос: :?:

(Если надо)

На всякий случай предоставляю полный скан двyх страниц учебника Куранта:
Вложение:
KurantI.jpg
KurantI.jpg [ 153.34 Кб | Просмотров: 0 ]

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение26.02.2016, 11:16 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Dan B-Yallay в сообщении #1102160 писал(а):
Так вот Anton_Peplov -- не тот участник, которому надо обьяснять

Я и не про объяснение ему. Если вы берётесь что-то объяснять студентам - вот тут вам надо быть достаточно аккуратными. А то, что вы привели - недостаточно.

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение26.02.2016, 17:28 
Заморожен


14/03/14
223
Большое спасибо всем участникам! Более-менее это уложилось в голове. Я понял, что определение в книге Куранта нестандартно.

RIP в сообщении #1102107 писал(а):
Я это к тому, что если взять, скажем, монотонную функцию, разрывную во всех рациональных числах, то для неё не существует первообразной ни на каком промежутке, в то время как интеграл с переменным верхним пределом прекрасно определён везде. Так что неопределённый интеграл нельзя путать с интегралами с переменным верхним пределом (если на функцию не наложены никакие условия типа непрерывности).
Не понимаю, как функция может иметь разрывы во всех рациональных числах? Это что-то очень нестандартное, так? Вероятно, новичкам (т. е. мне), которые разбираются с азами (и маловероятно, что полезут сильно глубоко), об этом всем лучше не думать.

(Тут еще вопрос хотел задать про отсутствие первообразной, но чего-то пока он не дозрел --- не получается грамотно сформулировать.)

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение26.02.2016, 17:46 
Заслуженный участник
Аватара пользователя


11/01/06
3828
По поводу Куранта. Что касается отсутствия $+C$, то это подробно обсуждается чуть дальше (с. 141–142), где понятие неопределённого интеграла соответствующим образом модифицируется. Там же вводится обозначение для неопределённого интеграла.

Главный косяк у Куранта в том, что он постоянно смешивает первообразную и интеграл с переменным верхним пределом. Соответствующую теорему он формулирует и доказывает для непрерывной функции, но позже при обсуждении первообразных применяет её для произвольной функции (по крайней мере, при беглом просмотре никаких слов ни про непрерывность, ни даже про промежуток я не заметил).

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение26.02.2016, 17:49 
Заслуженный участник
Аватара пользователя


11/12/05
10123
Munin в сообщении #1102197 писал(а):
Я и не про объяснение ему.
Придрались ко мне и начали поучать вы именно с него.
Munin в сообщении #1102197 писал(а):
Если вы берётесь что-то объяснять студентам - вот тут вам надо быть достаточно аккуратными. А то, что вы привели - недостаточно.
ЕСЛИ.... то да. Но обьяснял я именно Anton_Peplov-y и чтобы предупредить возможные упрёки в неаккуратности и т.п. сразу пояснил, что формулировка неточная. Любому человеку, имеющему некторое математическое образование, должно быть понятно, что это означает.

Я думаю, что в этой теме уже достаточно ваших поучений, пора бы остановиться и вернуться к предмету обсуждения.
По Курантовской формулировке неопределенного интеграла у вас есть какие-нибудь идеи?

-- Пт фев 26, 2016 08:51:52 --

RIP,
Спасибо. Надо бы мне глянуть на те страницы.

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение26.02.2016, 17:55 
Заслуженный участник
Аватара пользователя


11/01/06
3828

(Оффтоп)

Вообще, необычный учебник: впервые вижу, чтобы определённый интеграл вводился раньше, чем производная.

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение26.02.2016, 18:44 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Dan B-Yallay в сообщении #1102323 писал(а):
Придрались ко мне и начали поучать вы именно с него.

Я придрался? Я всего лишь ужаснулся.

Dan B-Yallay в сообщении #1102323 писал(а):
ЕСЛИ.... то да.

Ваши формулировки наводили на подозрение, что вы именно да.

Dan B-Yallay в сообщении #1102323 писал(а):
Но обьяснял я именно Anton_Peplov-y

Он явно не идиот и большой мальчик, и в ваших объяснениях не нуждается. По крайней мере, разобрался он быстрее вас.

Dan B-Yallay в сообщении #1102323 писал(а):
По Курантовской формулировке неопределенного интеграла у вас есть какие-нибудь идеи?

Оставлю это RIP, он гораздо более компетентен и заинтересован.

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение26.02.2016, 19:06 
Заслуженный участник
Аватара пользователя


11/12/05
10123
:roll:
Munin в сообщении #1102342 писал(а):
Я придрался? Я всего лишь ужаснулся.
Ужанулись чему? Как плохо я обьясняю участнику вашу же ошибку?
Munin в сообщении #1102342 писал(а):
Ваши формулировки наводили на подозрение, что вы именно да.
Ну дык читайте дисклеймеры к постам. Подозрения отпадут.
Munin в сообщении #1102342 писал(а):
Он явно не идиот и большой мальчик, и в ваших объяснениях не нуждается. По крайней мере, разобрался он быстрее вас.
Если б не нуждался, не задавал бы вопросы оба раза в такой форме, на которую МНЕ нельзя не ответить. А уж после ответов он таки да, разобрался.

По теме вам сказать нечего, предлагаю закончить оффтоп.

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение27.02.2016, 00:09 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Dan B-Yallay в сообщении #1102353 писал(а):
Как плохо я обьясняю участнику вашу же ошибку?

Вы чего-то объясняли? Изображение

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение27.02.2016, 00:20 


20/03/14
12041
Munin
Будет Вам.

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение27.02.2016, 00:28 
Заслуженный участник
Аватара пользователя


11/12/05
10123
Munin в сообщении #1102433 писал(а):
Вы чего-то объясняли? :facepalm:
Да! И, судя по его ответу
Anton_Peplov в сообщении #1101822 писал(а):
Спасибо, убедительно.
-- обьяснил. А вы еще этого не поняли? :D

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение27.02.2016, 00:37 


20/03/14
12041
 i  Настоятельная просьба прекратить выяснение, кто на ком стоял, иначе тема будет закрыта в силу - по всей видимости - исчерпанности более важных вопросов.

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение27.02.2016, 00:51 
Заслуженный участник
Аватара пользователя


20/08/14
8737
Господа, я могу попросить вас перестать склонять мое имя?
Мне, безусловно, приятно, что каждая из оппонирующих сторон считает меня большим мальчиком с сохранным интеллектом. Но в данный момент я чувствую себя мячом в футбольном матче, а это уже сомнительное удовольствие. Право же, хватит.

 Профиль  
                  
 
 Re: Что же это - неопределенный интеграл?
Сообщение27.02.2016, 00:55 


20/03/14
12041
Ну хватит, так хватит. Тоже правильно.
 i  Тема закрыта.

Тем более, что все, что можно, - и что не можно, - в ней, кажется, уже сказали.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 59 ]  На страницу Пред.  1, 2, 3, 4

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group