Большое спасибо всем участникам! Более-менее это уложилось в голове. Я понял, что определение в книге Куранта нестандартно.
Я это к тому, что если взять, скажем, монотонную функцию, разрывную во всех рациональных числах, то для неё не существует первообразной ни на каком промежутке, в то время как интеграл с переменным верхним пределом прекрасно определён везде. Так что неопределённый интеграл нельзя путать с интегралами с переменным верхним пределом (если на функцию не наложены никакие условия типа непрерывности).
Не понимаю, как функция может иметь разрывы во всех рациональных числах? Это что-то очень нестандартное, так? Вероятно, новичкам (т. е. мне), которые разбираются с азами (и маловероятно, что полезут сильно глубоко), об этом всем лучше не думать.
(Тут еще вопрос хотел задать про отсутствие первообразной, но чего-то пока он не дозрел --- не получается грамотно сформулировать.)