2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Забытые аргументы
Сообщение07.02.2016, 18:09 
Заслуженный участник
Аватара пользователя


23/07/05
18007
Москва
Sinoid в сообщении #1097682 писал(а):
Только тут оговорено словами число переменных, от которых зависят $f_1$ и $f_2$.
Это Вам мерещится. Всегда можно считать, что переменная одна. Только она может быть элементом "многомерного" пространства.

Я имею в виду, что функцию двух переменных $f(x_1,x_2)$ всегда можно записать как функцию одной переменной $f(\bar x)$, где $\bar x=(x_1,x_2)$.

 Профиль  
                  
 
 Re: Забытые аргументы
Сообщение07.02.2016, 18:15 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Sinoid в сообщении #1097682 писал(а):
Только тут оговорено словами число переменных, от которых зависят $f_1$ и $f_2$.

Не совсем так. Не число переменных (а что это такое?), а то, что аргументы у обеих функций берутся из одного множества.

 Профиль  
                  
 
 Re: Забытые аргументы
Сообщение07.02.2016, 18:17 


03/06/12
2874
Хотя $X$ может быть и прямым произведением других множеств. А что, вот в математических школах изучается прямое произведение? Немного опоздал, но все же.

 Профиль  
                  
 
 Re: Забытые аргументы
Сообщение07.02.2016, 18:25 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Sinoid
А вы задаете вопрос "с точки зрения математической школы", или в принципе? То есть с точки зрения математики?

 Профиль  
                  
 
 Re: Забытые аргументы
Сообщение07.02.2016, 18:43 
Заслуженный участник


31/12/05
1527
Sinoid в сообщении #1097693 писал(а):
Хотя $X$ может быть и прямым произведением других множеств.
В данном случае все характеристические функции, очевидно, определены на множестве $U$.

 Профиль  
                  
 
 Re: Забытые аргументы
Сообщение07.02.2016, 18:45 


03/06/12
2874
Sinoid в сообщении #1097693 писал(а):
Хотя $X$ может быть и прямым произведением других множеств

Нет, $X$ может быть просто некоторым подмножеством $n\mbox{-мерного}$ пространства. Так более общно.
provincialka в сообщении #1097697 писал(а):
Sinoid
А вы задаете вопрос "с точки зрения математической школы", или в принципе? То есть с точки зрения математики?

Просто в аннотации сказано, что книга рассчитана на учеников матшкол, а это накладывает значительные ограничения на дозволенные методы рассуждений. Максимум(минимум) квадратного трехчлена можно найти через выделение квадрата (до определения производной), а можно через производную. И если девятиклассник решит эту задачу через производную, это будет не совсем то, что от него ожидают, пусть даже и решение будет верным. Его все равно заставят эту задачу перерешать.

-- 07.02.2016, 19:48 --

tolstopuz в сообщении #1097706 писал(а):
Sinoid в сообщении #1097693

писал(а):
Хотя $X$ может быть и прямым произведением других множеств. В данном случае все характеристические функции, очевидно, определены на множестве $U$.

я писал уже про общий случай

 Профиль  
                  
 
 Re: Забытые аргументы
Сообщение07.02.2016, 19:20 
Заслуженный участник


27/04/09
28128
Можно надеяться, что в матшколе представляют, какой может быть смысл у равенства функций не в точке, а вообще (а какого быть не может). Тогда даже при нехватке формальных деталей запись $f = g$ будет понята правильно, сколько бы функции не имели аргументов.

(Оффтоп)

Sinoid в сообщении #1097660 писал(а):
Так этот пример так и задуман, чтобы показать возможность ошибочной интерпретации формулы.
Любой текст можно понять каким угодно образом, но часто люди друг друга всё-таки понимают. :-)

 Профиль  
                  
 
 Re: Забытые аргументы
Сообщение07.02.2016, 22:15 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Someone в сообщении #1097686 писал(а):
Я имею в виду, что функцию двух переменных $f(x_1,x_2)$ всегда можно записать как функцию одной переменной $f(\bar x)$, где $\bar x=(x_1,x_2)$.

А ещё её можно записать как функцию одной переменной, имеющую значение - функцию другой переменной. Этот фокус носит имя Хаскелла Карри - каррирование. То есть, получается $\bigl(f(x_1)\bigr)(x_2).$

 Профиль  
                  
 
 Re: Забытые аргументы
Сообщение10.02.2016, 20:43 


03/06/12
2874
Большое спасибо за профессиональную помощь.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 24 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: worm2


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group