2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Объединение отрезков
Сообщение02.01.2016, 16:41 
Замкнуто ли объединение?
$\bigcup\limits_{n=1}^{\infty}{\left[10^{-n},1\right]}$
На первый взгляд нет - 0 не входит ни в один из отрезков, но поскольку $0.(9)=1$ скорость сходимости может иметь значение.
Другими словами, мне непонятно входит ли число 1 в счетное объединение:
$\bigcup\limits_{n=1}^{\infty}{\left[0,1-10^{-n}\right]}$
Если входит, то ответ на первый вопрос должен быть положительным.
Спасибо.

 
 
 
 Re: Объединение отрезков
Сообщение02.01.2016, 16:58 
Аватара пользователя
Arkhipov в сообщении #1087589 писал(а):
Замкнуто ли объединение?
$\Big\cup{\left[10^{-n},1\right]}$

Если объединение берётся по всем натуральным $n$, то оно является полуинтервалом $(0,1]$ и, очевидно, не является замкнутым множеством.
Arkhipov в сообщении #1087589 писал(а):
На первый взгляд нет, но поскольку 0,(9)=1скорость сходимости может иметь значение.

Поясните, пожалуйста, свою мысль.

 
 
 
 Posted automatically
Сообщение02.01.2016, 16:59 
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы);
- отсутствуют собственные содержательные попытки решения задач(и).

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение02.01.2016, 17:56 
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 
 
 
 Re: Объединение отрезков
Сообщение02.01.2016, 17:58 
Аватара пользователя
Arkhipov в сообщении #1087589 писал(а):
Другими словами, мне непонятно входит ли число 1 в счетное объединение:
$\bigcup\limits_{n=1}^{\infty}{\left[0,1-10^{-n}\right]}$

А что такое объединение множеств? Вы это помните?

 
 
 
 Re: Объединение отрезков
Сообщение02.01.2016, 18:11 
Аватара пользователя
см. post1061078.html#p1061078

 
 
 
 Re: Объединение отрезков
Сообщение02.01.2016, 18:14 
Это множество, в которое входят все элементы, принадлежащие какому-нибудь из множеств совокупности. Я понимаю, что ни одно из множеств не содержит $0.(9)$, однако при бесконечном количестве девяток данное определение мне кажется схоластичным. Можно ли пояснить ответ как-то более прозрачно?

-- 02.01.2016, 21:20 --

demolishka в сообщении #1087604 писал(а):

Я не говорю о пределах, мне интересно, как интерпретировать:
$[0, 1-10^{-n}]$
при сколько угодно больших n.

 
 
 
 Re: Объединение отрезков
Сообщение02.01.2016, 18:27 
Аватара пользователя
Arkhipov в сообщении #1087605 писал(а):
Я понимаю, что ни одно из множеств не содержит $0.(9)$, однако при бесконечном количестве девяток данное определение мне кажется схоластичным.

Извините, не понимаю Ваш "образ".
Лучше ответьте сами: если ни одно из объединяемых множеств не содержит единицу, входит ли единица в это самое объединение? Только исходя из буквы определения, а не из Вашей личной трактовки его "духа". И, кстати, обратите внимание на пост demolishka. Думаю, он точно определил причину Ваших сомнений: незачем, построив объединение множеств, далее строить замыкание этого объединения.

 
 
 
 Re: Объединение отрезков
Сообщение02.01.2016, 18:28 
Аватара пользователя
Arkhipov
Как-то странно вы ставите вопрос... В одном вопросе изучаете два бесконечных объединения... Это создаёт путаницу!
Arkhipov в сообщении #1087605 писал(а):
Это множество, в которое входят все элементы, принадлежащие какому-нибудь из множеств совокупности. Я понимаю, что ни одно из множеств не содержит $0.(9)$, однако при бесконечном количестве девяток данное определение мне кажется схоластичным.
Что такое "схоластичное определение"? Или определение, или нет :shock:

 
 
 
 Re: Объединение отрезков
Сообщение02.01.2016, 18:31 
Это произошло случайно: сначала я задумался над первым, а когда попытался объяснить оказалось, что второе удачней.

-- 02.01.2016, 21:44 --

Mihr в сообщении #1087606 писал(а):
И, кстати, обратите внимание на пост demolishka. Думаю, он точно определил причину Ваших сомнений: незачем, построив объединение множеств, далее строить замыкание этого объединения.

Я понял его мысль так: в бесконечной последовательности
$\lbrace 0.9, 0.99,  \cdots \rbrace$ не содержится $0.(9)$. Именно это мне кажется схоластикой.

 
 
 
 Re: Объединение отрезков
Сообщение02.01.2016, 19:04 
Аватара пользователя
Arkhipov в сообщении #1087608 писал(а):
Я понял его мысль так: в бесконечной последовательности
$\lbrace 0.9, 0.99,  \cdots \rbrace$ не содержится $0.(9)$.

Ну, если Вам так понятнее, пусть будет так. Действительно, предел числовой последовательности часто не совпадает ни с одним элементом этой последовательности.
Arkhipov в сообщении #1087608 писал(а):
Именно это мне кажется схоластикой.

Здесь комментировать нечего. Если Вам какой-то факт в математике "не нравится"... Что тогда делать? Наверное, постараться хотя бы привыкнуть к нему.

 
 
 
 Re: Объединение отрезков
Сообщение02.01.2016, 19:26 
Arkhipov в сообщении #1087608 писал(а):
Я понял его мысль так: в бесконечной последовательности
$\lbrace 0.9, 0.99,  \cdots \rbrace$ не содержится $0.(9)$. Именно это мне кажется схоластикой.

Это ничего. Назовите номер элемента последовательности, который равен $0.(9)$. Сотый? Миллионный? Еще какой?

 
 
 
 Re: Объединение отрезков
Сообщение02.01.2016, 19:40 
Спасибо большое за интересную дискуссию. Привыкнуть я смогу; но все же дело не совсем в пределах. Пусть я строю последовательность равенств:
$1=1$
$2=1+1$
$3=1+1+1$
Я не понимаю, почему бесконечная последовательность
$\lbrace  \lbrace1\rbrace, \lbrace1,1\rbrace, \cdots \rbrace$
не содержит бесконечного числа единиц?

 
 
 
 Re: Объединение отрезков
Сообщение02.01.2016, 19:43 
Аватара пользователя
Arkhipov, а что Вы называете "схоластикой"? По-моему, всё в точности наоборот: схоластикой было бы объявлять, что точка $1=0.(9)$ входит в последовательность $0.9, 0.99, \dots$, хотя не совпадает ни с первым её членом, ни со вторым, ни с третьим, ... - просто на основе какого-то смутного интуитивного представления, что члены последовательности "сколь угодно близко" подходят к точке $1$. В математике говорят, что некоторое число есть член последовательности, только если оно имеет в этой последовательности конкретный (и конечный) номер.

А это смутное интуитивное представление, о котором шла речь, формализуется по-другому: говорят, что хотя $1$ и не есть член последовательности, но является её предельной точкой. Так же и с Вашим изначальным объединением множеств и точкой $0$: никто не спорит, что $0$ есть предельная точка для этого объединения. Но вот говорить о том, что $0$ принадлежит этому объединению, будет неправильно, потому что эта точка не принадлежит ни одному конкретному множеству из объединяемых.

-- 02.01.2016, 19:45 --

Arkhipov, в последнем сообщении Вы написали какую-то ерунду, уж извините.

 
 
 
 Re: Объединение отрезков
Сообщение02.01.2016, 19:48 
Во-первых, она не содержит бесконечного числа единиц, потому что не содержит единиц вообще. Она содержит, насколько я могу судить, последовательности единиц. Если вы имеете в виду, что эта последовательность последовательностей не содержит бесконечную последовательность единиц, то это происходит примерно по той же причине, что она не содержит розового единорога: ни в какой строчке из вами перечисленных нет ни того, ни другого.

 
 
 [ Сообщений: 17 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group