djturxan,
первая из полученных сумм получается, если принять формальное соглашение о том, что при

соответствующий биномиальный коэффициент равен нулю. Это выглядит искусственно, но зато позволяет распространить известное рекуррентное соотношение для биномиальных коэффициентов в том числе на случай

.
Что касается второй суммы: так получается, если выполнить сначала подстановку

, а затем переобозначение: вместо индекса суммирования

вновь написать

. Так делать можно, поскольку от обозначения индекса суммирования значение суммы не зависит.
По поводу изменения границ для индекса суммирования: к первой сумме чисто формально прибавлено нулевое слагаемое; во второй сумме сдвинулись и нижняя, и верхняя границы изменения индекса суммирования в силу упомянутой подстановки

. Кстати, если Вы заметили, на следующем шаге тождественных преобразований в этой (второй) сумме также появляется нулевое слагаемое. Но не в качестве последнего, а, наоборот, в качестве предшествующего первому.