2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Дифференциальное уравнение с особенностью
Сообщение03.12.2015, 19:23 
Аватара пользователя
Подскажите, пожалуйста, как правильно искать собственные значения и собственные функции такого дифференциального оператора, действующего на всей прямой:
$$\left( \frac{{{d}^{2}}}{d{{x}^{2}}}-\frac{1}{\left| x \right|} \right)y=-\left| \mu  \right|y$$
Я хочу решить эту задачу численно, но возникает сразу две проблемы: бесконечная область и особенность в уравнении. Как правильно с этим бороться?

Я предполагаю, что особенность в уравнении можно победить, домножив всё на модуль аргумента, но остаётся вопрос по собственным функциям: будут ли они ограничены со своими производными вплоть до третьей включительно. Ведь если использовать простейшую конечно-разностную схему на ограниченной, но большой области, то погрешность вычисления второй производной (даже если она ограничена) будет определяться величиной третьей производной. Есть ли какой-нибудь способ понять характер поведения решения в нуле, не решая уравнение?

Возможно, решение можно представить в виде суперпозиции каких-нибудь убывающих на бесконечности функций (типа полиномов, помноженных на $\exp \left( -\left| x \right| \right)$), но тогда было бы хорошо прикинуть скорость их убывания, чтобы правильно выбрать разложение. Хотелось бы, чтобы она была экспоненциальная, но желаемое не всегда становиться действительностью. Поэтому опять же, есть ли какой-нибудь способ понять характер поведения решения на бесконечности, не решая уравнение?

Имеет ли эта задача (с произвольным дифференциальным оператором) какое-нибудь общепринятое название. Она очень похожа на задачу Штурма-Лиувилля, но последняя ставится в ограниченной области. Здесь же — неограниченная.

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение03.12.2015, 22:35 
Аватара пользователя
Вы уверены в знаках? У указанного Вами оператора спектр абсолютно непрерывный (и отрицательный). Если же у Вас перед $\partial_x^2 $ знак "-", то см. ниже.

А зачем? Здесь всё найдено аналитически даже в трёхмерном случае. Именно если рассмотреть чисто радиальные решения, с $l=m=0$, то будет $$-\partial^2_r -2r^{-1}\partial_r -r^{-1}=r^{-1}(-\partial_r^2-r^{-1})r,$$ т.е. с.з. будут такие же, а с.ф. отличаться только множителем.

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение03.12.2015, 23:34 
Аватара пользователя
Да, перед вторым дифференциалом нужен минус, я ошибся. Однако, я сейчас хотелось бы разобраться как решать одномерную задачу, а не многомерную. При изменении размерности существенно меняется и характер решения, например, фундаментальное решение для оператора Лапласа в трёхмерном случае обратное расстояние, в двумерном — логарифм расстояния, а в одномерном — вообще модуль.

Но дело даже не в этом. Я хочу понять и разобраться, как вообще надо подходить к таким задачам с численным решением. Как ещё до решения выявить ключевые особенности функции, чтобы не напороться на какие-нибудь расходимости, а наоборот воспользоваться этими особенностями для облегчения решения. Можно ли сказать, например, что в уравнении
$$\left(-\frac{{{d}^{2}}}{d{{x}^{2}}}-\frac{1}{\left| x \right|} \right)y=-\left| \mu  \right|y$$ вдали от начала координат слагаемым $-\frac{y}{\left| x \right|}$ можно пренебречь в сравнении с $-\frac{{{d}^{2}}}{d{{x}^{2}}}$ и считать, что решение там описывается уравнением
$$\frac{{{d}^{2}y}}{d{{x}^{2}}}=\left| \mu  \right|y$$то есть убывающей экспонентой?

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение03.12.2015, 23:39 
Аватара пользователя
Трёхмерная задача полностью решена аналитически. Её с.з. известны, и наборы с.ф. тоже. Среди них имеются радиальные. И эти радиальные с.з. совпадают с одномерными а с.ф. отличаются лишь множителем.

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение03.12.2015, 23:45 
Аватара пользователя
Разумеется, радиальные собственные функции трёхмерной задачи не совпадают с одномерными! В сферической системе координат коэффициенты Ламэ отличны от единицы. Поэтому там и уравнение другое.

Ок, действительно, одно к другому можно привести заменами. Чудесным образом это так. Для меня это будет интересно лишь как хорошая возможность проверить численное решение. Но сначала надо понять как его получить. Прошу помощи в этом.

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение04.12.2015, 00:50 
Аватара пользователя
B@R5uk в сообщении #1079261 писал(а):
Чудесным образом это так.

Более того: нечётномерные задачи—налево, чётномерные задачи—направо.

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение06.12.2015, 01:29 
Аватара пользователя
Обязаны ли собственные функции оператора:
$$\begin{matrix}
  \left( -\frac{{{\partial }^{2}}}{\partial {{x}^{2}}}-\frac{{{\partial }^{2}}}{\partial {{y}^{2}}}+\frac{\gamma }{\left| x-y \right|} \right)\psi =\varepsilon \psi , \\ 
  x,y\in \left[ 0,1 \right] \\ 
\end{matrix}$$ обращаться в ноль на его особенности $x=y$?

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение06.12.2015, 05:56 
Аватара пользователя
Да, обобщённые с.ф. обязаны.

Этот оператор с.ф. не имеет, его спектр абсолютно непрерывный, т.к. он прямая сумма одномерного Шрёдингера с куликовским потенциалом, который при при $\gamma<0$ имеет с.ф. (но спектр $[0,\infty)$ в любом случае абсолютно непрерывный) и свободного Шрёдингера центра масс, а у того спектр абсолютно непрерывный.

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение06.12.2015, 11:06 
Аватара пользователя
Здесь оператор действует на квадрате $ x,y\in \left[ 0,1 \right] $, на границах которого $\psi=0$. Так что спектр дискретный. Кроме того $\gamma,\varepsilon>0$.

Меня смущает тот факт, что бывают потенциалы с особенностью, например $-\frac{1}_{r}$ в сферической системе координат, у которых есть волновые функции, отличные от нуля в особенности. Почему же в этом потенциале таких не может быть?

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение06.12.2015, 11:13 
Аватара пользователя
B@R5uk в сообщении #1079862 писал(а):
Почему же в этом потенциале таких не может быть?

Потому что $1/r \in L^2$ в окрестности 0 в 3х-мерном случае, но не в 1-мерном.

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение06.12.2015, 11:21 
Аватара пользователя
То есть равенство нулю волновых функций в особенности потенциала следует из принципа ограниченности средней потенциальной энергии?

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение06.12.2015, 16:18 
Аватара пользователя
B@R5uk в сообщении #1079865 писал(а):
То есть равенство нулю волновых функций в особенности потенциала следует из принципа ограниченности средней потенциальной энергии?

Можно сказать и так.

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение06.12.2015, 17:34 
Аватара пользователя
Ну, это чисто физические соображения, а как это можно было бы строго математически обосновать?

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение06.12.2015, 18:20 
Аватара пользователя
B@R5uk в сообщении #1079940 писал(а):
Ну, это чисто физические соображения, а как это можно было бы строго математически обосновать?

А строго математически нужно определить область определения оператора.

 
 
 
 Re: Дифференциальное уравнение с особенностью
Сообщение06.12.2015, 18:30 
Аватара пользователя
Интегрируемые с квадратом функции, очевидно. Или может быть что-то другое?

 
 
 [ Сообщений: 17 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group