2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 17:46 
Заслуженный участник


14/10/14
1220
ASCCCIII в сообщении #1068730 писал(а):
Но все-равно если подставлять полученный выражения, то в итоге останется неизвестной $v_1$ или именно в этом суть добавочного предложения
Slav-27 в сообщении #1068706 писал(а):
и его скорость перед ударом имеет известную величину $v_1$
Ну я же писал: $v_1$ следует считать заданной величиной, параметром, и выражать ответ через неё.

Вот, предположим, у вас задача: тело равномерно прямолинейно двигается в течение 10 секунд, какое расстояние оно проходит? - Это условие неполно: нельзя получить ответ в виде числа. Но можно дополнить условие вот так: скорость тела имеет данную (заданную) величину $v\,\text{м/с}$. Тогда можно выписать ответ: $\text{искомое расстояние}=v\cdot 10\,\text{м}$.

Имеет ли смысл здесь вычислять $v$ или именно в том суть добавочного предложения, что $v$ считается задано (хоть и точно не известно) и через него надо выражать ответ?

 Профиль  
                  
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 17:49 
Заслуженный участник


28/12/12
7990
ASCCCIII
Вам уже намекали, что импульс тут сохраняться не будет. Поэтому закон сохранения импульса писать нельзя.
Нужно писать закон сохранения момента импульса (относительно оси, где действует внешняя сила - со стороны подвеса на стержень).
Впрочем, при неизвестной скорости налетающего шара это все равно не поможет.

 Профиль  
                  
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 17:55 
Заслуженный участник


14/10/14
1220
ASCCCIII в сообщении #1068730 писал(а):
Через закон сохранения импульса $m_1v_1 = m_1u_1 + m_2u_2$
Он здесь не выполняется (объясните, почему). И вы так и не написали, что такое $u_2$. У вращающегося стержня разные скорости у разных точек.

ASCCCIII в сообщении #1068730 писал(а):
Через закон сохранения импульса $m_1v_1 = m_1u_1 + m_2u_2$ и закон сохранения энергии $\frac {m_1v_1^2}{2} = \frac {m_1u_1^2}{2} + \frac {m_2u_2^2}{2}$ выразил $u_2 = \frac {2m_1v_1}{m_1 + m_2}$

Потом исправил кинетическую энергию поступательного движения, на вращательную:
$m_2gh = \frac {Jw^2}{2} = \frac {u_2^2}{6R^2}$
Что, простите?

Запишите закон сохранения энергии по-нормальному. Какие виды энергии вы учитываете до столкновения? Чему равна общая энергия до столкновения? Те же вопросы про после столкновения. Какая энергия переходит в какую в результате столкновения?

Если вы продолжите выписывать формулы, которые вы не понимаете, с вами будет неинтересно разговаривать.

-- 31.10.2015, 19:21 --

Какой у вас учебник?

 Профиль  
                  
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 18:32 
Аватара пользователя


03/10/15
38
Slav-27 в сообщении #1068742 писал(а):
Ну я же писал: $v_1$ следует считать заданной величиной, параметром, и выражать ответ через неё.

Теперь, понял, Спасибо.

DimaM в сообщении #1068744 писал(а):
Вам уже намекали, что импульс тут сохраняться не будет. Поэтому закон сохранения импульса писать нельзя.

Да, согласен, не учел это замечание.

Slav-27 в сообщении #1068749 писал(а):
Если вы продолжите выписывать формулы, которые вы не понимаете, с вами будет неинтересно разговаривать.

В этом и проблема, что мне кажется, что я пишу последовательные вещи, а на деле это оказывается глупостью. Тяжело мне физика дается, но решать все равно надо.
Не буду больше отнимать время, понимаю, что задаю уже банальные вопросы. Буду дальше пытаться разобраться, вдруг осенит :-) Но, все равно всем Спасибо за помощь :wink:

 Профиль  
                  
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 18:41 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ASCCCIII в сообщении #1068730 писал(а):
Через закон сохранения импульса $m_1v_1 = m_1u_1 + m_2u_2$

Вы же начинали с правильного закона сохранения момента импульса. Почему вообще соскочили на закон сохранения импульса?

-- 31.10.2015 18:45:52 --

ASCCCIII в сообщении #1068766 писал(а):
В этом и проблема, что мне кажется, что я пишу последовательные вещи, а на деле это оказывается глупостью.

Пробуйте действовать более систематически. Выписывайте формулы не в беспорядке, а сначала все необходимые - и для каждой проверьте, что её использование в данном случае оправдано и не запрещено. Потом проанализируйте, достаточно ли их. Потом ищите решение - но не добавляйте на этом этапе никаких новых формул, действуйте только математическими преобразованиями.

 Профиль  
                  
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 18:55 
Аватара пользователя


03/10/15
38
Munin в сообщении #1068768 писал(а):
Вы же начинали с правильного закона сохранения момента импульса. Почему вообще соскочили на закон сохранения импульса?

Да, сейчас я как раз вернулся, и пытаюсь через него выразить.

Munin в сообщении #1068768 писал(а):
Пробуйте действовать более систематически. Выписывайте формулы не в беспорядке, а сначала все необходимые - и для каждой проверьте, что её использование в данном случае оправдано и не запрещено. Потом проанализируйте, достаточно ли их. Потом ищите решение - но не добавляйте на этом этапе никаких новых формул, действуйте только математическими преобразованиями.

Спасибо! Буду стараться не пользоваться отдельными формулами :wink:

 Профиль  
                  
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 19:10 
Заслуженный участник


14/10/14
1220
ASCCCIII в сообщении #1068775 писал(а):
Да, сейчас я как раз вернулся, и пытаюсь через него выразить.
Я думаю, что вам потребуется и закон сохранения момента импульса, и закон сохранения энергии. Закон сохранения импульса вы выписали в стартовом посте. Выпишите закон сохранения энергии.

 Профиль  
                  
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 20:24 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Slav-27 в сообщении #1068787 писал(а):
Закон сохранения импульса вы выписали в стартовом посте.

И именно он здесь не нужен, поскольку не выполняется ни на одном этапе физического процесса :-)

 Профиль  
                  
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 21:00 
Заслуженный участник


14/10/14
1220
Виноват. Момента импульса. Вот:
ASCCCIII в сообщении #1068419 писал(а):
Согласно закону сохранения импульса $m_1v = m_1u + \frac{Jw}{R}$, где $J$ - момент инерции, а $w$ - угловая скорость.
- только $u$ не знаю, что это.

 Профиль  
                  
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 21:41 
Заслуженный участник
Аватара пользователя


30/01/09
7292
Munin в сообщении #1068820 писал(а):
Slav-27 в сообщении #1068787 писал(а):
Закон сохранения импульса вы выписали в стартовом посте.

И именно он здесь не нужен, поскольку не выполняется ни на одном этапе физического процесса :-)

:?: Munin
Поясните свою мысль. Что-то не догоняю. (Что у топикстартера неправильно - не отрицаю).

 Профиль  
                  
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 21:47 
Заслуженный участник


14/10/14
1220
Там стержень подвешен, поэтому импульс системы из шара и стержня меняется.

 Профиль  
                  
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 21:52 
Заслуженный участник
Аватара пользователя


30/01/09
7292
Slav-27 в сообщении #1068886 писал(а):
Там стержень подвешен, поэтому импульс системы из шара и стержня меняется.

Да. Импульс черес подвес передаётся. Извиняюсь. Чисто терминологическое непонимание. Импульс двух тел не сохраняется конечно.

-- Сб окт 31, 2015 23:07:18 --

мат-ламер в сообщении #1068696 писал(а):
Я тоже думаю, что скорость всё-таки вычисляется. На три параметра три закона. Не тривиально, что и закон сохранения импульса также выполняется при упругом ударе. Допустим, стержень висит в тележке. Интуитивно кажется, что после удара шара тележка со стержнем поедет вперёд не рывком, а плавно.

Тут я ерунду написал. Если выписать закон сохранения импульса и умножить на длину стержня, то он будет конфликтовать с законом сохранения момента импульса. И можно вычислить импульс, передаваемый через подвес. И остаётся два закона на три параметра.

 Профиль  
                  
 
 Re: Угол отклонения стержня
Сообщение31.10.2015, 22:14 
Заслуженный участник


28/12/12
7990
Думается, уже всем должно быть понятно, что без знания начальной скорости шара задачу решить невозможно.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 28 ]  На страницу Пред.  1, 2

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Cos(x-pi/2)


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group