2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Что такое температура?
Сообщение17.10.2015, 17:28 
Аватара пользователя


12/05/12
86
 i  profrotter:
Отделено от Температура

Munin в сообщении #1057640 писал(а):
...температуру имеют и классически-механические системы. Наиболее известная и простая - это идеальный газ: множество летающих и сталкивающихся материальных точек.


А в каком смысле материальных точек? Разве точки могут сталкиваться? У них же нулевой объем (площадь в проекции) и вероятность их столкновения равна 0.

Munin в сообщении #1057640 писал(а):
Но тут есть аналогичная фраза: это явление имеет вероятностно-статистическую природу, и не имеет аналога в мире систем с обозримым числом элементов, без беспорядка, движущихся детерминистически.

Это об этом?
Munin в сообщении #142385 писал(а):
AlexNew в сообщении #142380 писал(а):
Можно ли вывести скажем второе начало термодинамики из статфизики?

Пытаются. Успех частичен.

Когда-то читал подобные дискуссии
Цитата:
>А в модели Губина (идеальные шарики в идеальном сосуде) никаких случайностей нет. Давайте приготовим ярко выраженное неравновесное состояние: все частицы находятся в одной половине сосуда и имеют строго равные скорости, направленные к другой, пустой половине. Будем моделировать поведение системы "на бумаге", так, как этого хочет Губин, решая уравнения механики. Частицы полетят вперед и заполнят другую половину сосуда, потом ударятся об абсолютно гладкую стенку и дружно вернутся назад. Так они и будут болтаться из одной половины сосуда в другой, а неравновесное состояние сохранится неограниченно долго, демонстрируя "согласование термодинамики с механикой", которого вы с Губиным так добиваетесь.
>Хи-хи. Но почему на сосуд вам нельзя повесить бирку "термодинамическая система"? Что мешает? А раз повесите - будьте добры ответить - почему это вдруг энтропия неубывает?


А каково текущее состояние вопроса?

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 13:38 
Заслуженный участник
Аватара пользователя


30/01/06
72407
diakin в сообщении #1063705 писал(а):
А в каком смысле материальных точек? Разве точки могут сталкиваться? У них же нулевой объем (площадь в проекции) и вероятность их столкновения равна 0.

Да, точки, строго говоря, не могут сталкиваться.

В физике об этом говорят так: возьмём не точки, а шарики малого радиуса. Тогда столкновения возникают с ненулевой вероятностью, и равновесное распределение быстро устанавливается. Но в ряде формул возникают поправки за счёт $r.$ После этого, можно взять предел при $r\to 0,$ чтобы получить формулы идеального газа. Фактическое время установления равновесия при этом устремляется в бесконечность, но всё равно можно брать предел по состояниям, когда равновесие уже установилось. Получается некая умозрительная модель, но тем не менее очень полезная на практике: часто равновесие есть, а поправками от $r$ можно пренебречь, например, в реальном не слишком плотном газе.

diakin в сообщении #1063705 писал(а):
Когда-то читал подобные дискуссии

Это, мягко говоря, не дискуссия, а нечто безграмотное.

Суть, конечно, в том, что чтобы система вела себя "по-термодинамически", в ней должны выполняться некоторые условия. Чаще всего их сводят под названием "эргодичность".

В описанном случае, ситуация, когда все шарики имеют в точности равные скорости, имеет вероятность 0. А вот если рассмотреть какие-то другие скорости, находящиеся в пределах $\varepsilon$ от этих точно равных, то вероятность такой ситуации будет уже ненулевая. И поэтому, именно такие ситуации и будут встречаться в жизни, а в них будет наступать перемешивание и установление равновесия, и достаточно быстро ($\sim-\ln\varepsilon,$ кажется).

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 18:27 
Аватара пользователя


12/05/12
86
Munin в сообщении #1063921 писал(а):
... возьмём не точки, а шарики малого радиуса. Тогда столкновения возникают с ненулевой вероятностью, и равновесное распределение быстро устанавливается.

Понятно.
Извините, тогда еще вопрос. Шарики могут сталкиваться под разными углами - от удара "в лоб", до удара по касательной.
Пусть в начальный момент скорости всех молекул равны по модулю, но направление движения молекул разное.
Этого достаточно, чтобы через какое-то время распределение скоростей стало максвелловским?
То есть столкновение шариков под разными углами автоматически приводит к распределению Максвелла, независимо от начальных условий?
Кроме вырожденных случаев как ниже.

Munin в сообщении #1063921 писал(а):
Суть, конечно, в том, что чтобы система вела себя "по-термодинамически", в ней должны выполняться некоторые условия. Чаще всего их сводят под названием "эргодичность".

В описанном случае, ситуация, когда все шарики имеют в точности равные скорости, имеет вероятность 0. А вот если рассмотреть какие-то другие скорости, находящиеся в пределах $\varepsilon$ от этих точно равных, то вероятность такой ситуации будет уже ненулевая. И поэтому, именно такие ситуации и будут встречаться в жизни, а в них будет наступать перемешивание и установление равновесия, и достаточно быстро ($\sim-\ln\varepsilon,$ кажется).


Тут есть один момент (правда он вроде ни на что не влияет :-) ) - любое наперед заданное распределение по скоростям имеет вероятность равную 0. Не только, когда все шарики имеют равные скорости. Потому что это точка (в фазовом пространстве ?).
А если скорости находятся в каком-то интервале - то вероятность отлична от нуля.

Вероятность выпадения в лотерею чисел 1,2,3,4 равна вероятности выпадения 1,3,5,7 и любой другой комбинации.

Если мы кидаем точки в объем, то вероятность, что они все окажутся в одной половине сосуда, а в другой половине не будет ни одной, равна вероятности любого другого распределения молекул по объему. В этом смысле нельзя говорить, что одно состояние является "упорядоченным", а другое "неупорядоченным".
Хотя..
Если мы кидаем точки в объем, то вероятность, что точка попадет в правую половину равна $1/2$. Что две точки туда попадут - $1/4$. И так далее.
А вероятность того, что точка просто попадет в объем равна 1. И для двух точек равна 1. И для $N$.
Поэтому вероятность состояния, когда точки соберутся в одной половине объема в $N^2$ раз меньше чем, когда точки распределены по всему объему.
В этом смысле состояние "все точки в одной половине" является более упорядоченным, чем "точки во всем объеме"
Но теперь разделим сосуд на две части не прямой линией, а любой загогулистой кривой, или даже выделим подъобем любой формы, лишь бы его площадь равнялась половине всего объема. Вероятность попадания точек в такой подъобъем будет тоже $1/N^2$ и он тоже будет "упорядоченным".
Как-то так?
:facepalm:

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 19:11 
Заслуженный участник


20/08/14
11779
Россия, Москва
Только не $1/N^2$, а $1/2^N$, что намного меньше.
И вероятности равны только для фиксированных распределений молекл по объёму: все слева, все справа, все сверху, все в центре, ... А вот вероятность что из 10 молекул хотя бы одна (две, три) попадут в другую половину - не $1/2^{10}$, как вероятность что все они в одной половине, а намного больше. Посчитайте сами во сколько раз. :-) А уж если взять не десять молекул, а хотя бы триллионы ... Вероятность что разница в количестве молекул в любых двух половинках сосуда не превысит миллиона практически равна 1. Потому и говорят что хаотическое распределение более вероятно.

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 20:07 
Аватара пользователя


12/05/12
86
Dmitriy40 в сообщении #1064024 писал(а):
Только не $1/N^2$, а $1/2^N$, что намного меньше.
И вероятности равны только для фиксированных распределений молекл по объёму: все слева, все справа, все сверху, все в центре, ... А вот вероятность что из 10 молекул хотя бы одна (две, три) попадут в другую половину - не $1/2^{10}$, как вероятность что все они в одной половине, а намного больше. Посчитайте сами во сколько раз. :-) А уж если взять не десять молекул, а хотя бы триллионы ... Вероятность что разница в количестве молекул в любых двух половинках сосуда не превысит миллиона практически равна 1. Потому и говорят что хаотическое распределение более вероятно.


Да, $1/2^N$, не туда поставил степень )

Вероятность, что 9 молекул попадут в одну половину $1/2^{9}$. И еще одна туда или сюда - это $1/2$
Вероятности перемножаются, итого опять $1/2^{10}$
Разве не так? )
Ну, это когда И
....
Если хотя бы одна из 10 кинутых должна попасть в левую половину
....
бросаем молекулу 10 раз.
число возможных исходов $2^{10}=1024$
число благоприятных исходов $2^{10}-1=1023$ - все, кроме одного, когда все молекулы попали в правую половину.
Вероятность значит P=$1023/1024$
как-то так )

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 20:48 
Заслуженный участник


20/08/14
11779
Россия, Москва
Я кстати ошибся, вероятность не $1/2^N$, а $1/2^{N-1}$. Первая - это вероятность что все $N$ молекул окажутся именно слева (или именно справа), а вторая - вероятность что они окажутся все вместе или справа или слева (или ещё где, но вместе). Потому что первая молекула может попасть куда угодно и для неё вероятность попасть в будущую "кучу-малу" равна $1$.

diakin в сообщении #1064035 писал(а):
Вероятности перемножаются, итого опять $1/2^{10}$
Разве не так? )
Не так. Вероятность хотя бы одной молекуле попасть не в общую кучу составляет $1-\dfrac{1}{2^{N-1}}$ (полная вероятность минус вероятность что все $N$ попадут в общую кучу). Здесь не учитываю где именно будет куча, слева или справа.

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 21:12 
Аватара пользователя


12/05/12
86
Dmitriy40 в сообщении #1064048 писал(а):
Я кстати ошибся, вероятность не $1/2^N$, а $1/2^{N-1}$. Первая - это вероятность что все $N$ молекул окажутся именно слева (или именно справа), а вторая - вероятность что они окажутся все вместе или справа или слева (или ещё где, но вместе). Потому что первая молекула может попасть куда угодно и для неё вероятность попасть в будущую "кучу-малу" равна $1$.

diakin в сообщении #1064035 писал(а):
Вероятности перемножаются, итого опять $1/2^{10}$
Разве не так? )
Не так. Вероятность хотя бы одной молекуле попасть не в общую кучу составляет $1-\dfrac{1}{2^{N-1}}$ (полная вероятность минус вероятность что все $N$ попадут в общую кучу). Здесь не учитываю где именно будет куча, слева или справа.


Я там подправил сообщение уже. $1023/1024$, если речь идет о попадании в конкретную половину.
А если из $N$ молекул хотя бы $N/2$ должны попасть попасть в левую половину - вероятность равна $1/2 (512/1024)$?

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 21:38 
Заслуженный участник


20/08/14
11779
Россия, Москва
diakin в сообщении #1064059 писал(а):
А если из N молекул хотя бы N/2 должны попасть попасть в левую половину - вероятность равна 1/2 (512/1024)?
Вот тут боюсь ошибиться, но нет: вероятность что все $N-N/2$ соберутся справа равна $1/2^{N-N/2}$, значит вероятность что хотя бы $N/2$ будут слева равна $1-\dfrac{1}{2^{N-N/2}}$. И для $N=10$ она равна $1-\dfrac{1}{2^5}=0.96875$, а не $0.5$. Однако. :shock:
Пожалуй лучше дождаться кого-то более понимающего ... :oops:

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 21:58 
Аватара пользователя


12/05/12
86
Ну, я думал что из 1024 возможных исходов, половина будет благоприятными, поэтому вероятность 0,5.
Ну пусть из 4-х шт. надо 2 шт. в левую. 0 -правая, 1 левая.
1234
0000 - все в правую
0001
0011
0100
0101
0110
0111
1000
......
1111 - все в левую

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 22:14 
Заслуженный участник


20/08/14
11779
Россия, Москва
Угу, вот и получится, что от 2 до 4 молекул слева тогда, когда в числе от двух до четырёх любых битов в 1. Т.е. 12 исходов из 16 или $3/4$.
Вероятность по формуле $1-\dfrac{1}{2^{4/2}}=3/4$, совпадает.

-- 18.10.2015, 22:18 --

Легко подсчитать и вероятность распределения ровно поровну (ровно два единичных бита в числе) - всего 6 исходов из 16-ти, или $3/8$. И тоже не половина.

-- 18.10.2015, 22:27 --

А ещё интересно подсчитать для 5 молекул вероятность "почти равного" распределения, когда слева 2 или 3 молекулы. Получается 20 исходов из 32 или $5/8$. Т.е. если не требовать строгого равенства количества молекул слева-справа, то вероятность будет больше половины - такие "почти равные" распределения более вероятны любых прочих. И чем больше молекул - тем вероятнее.

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 22:52 
Аватара пользователя


12/05/12
86
Ну да правильно, оно конечно симметрично, но все комбинации с двумя единицами в нашу пользу.

А теперь самое смешное. (Сорри, хотелось бы разобраться с этим делом)
Получается, что неупорядоченное состояние - это когда количество частиц в обоих половинах сосуда одинаково.
А когда количество частиц в обоих половинах сосуда неодинаково - состояние частично упорядочено.
Ну так получается, что для 4-х частиц число благоприятных исходов для неупорядоченного состояния равно 6 -все комбинации когда число нулей равно числу единиц, т.е $6/16$.
4-0011 1
6-0101 - 2
7-0110 - 3
10-1001 - 4
11-1010 - 5
13-1100 - 6
А для упорядоченного состояния $10/16$. То есть вероятность упорядоченного состояния выше. Вроде как бред :roll:

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 23:24 
Заслуженный участник


20/08/14
11779
Россия, Москва
Не бред, упорядоченных состояний не одно, их просто тупо больше разных, чем одно единственное неупорядоченное (фактически именно его надо называть полностью упорядоченным, т.к. именно в нём строгое условие единственности распределения), потому они все в сумме и более вероятны. Это проблема Вашего выбора определений что такое упорядоченное и неупорядоченное состояния. Но если рассмотреть много молекул и посчитать вероятность не строгого равенства молекул слева-справа, а приблизительного равенства - вот оно будет намного более вероятным. Возьмите 10 молекул и подсчитайте вероятность что слева их будет 4 или 5 или 6. А потом вероятность что их будет 4 или 5 или 6 не именно слева, а где угодно, или слева, или справа. Вот последняя вероятность и проиллюстрирует вероятность неупорядоченного состояния.
Можно вообще построить график зависимости вероятности от количества молекул и от меры неупорядоченности (разности между двумя кучками). И подставить туда число Авогадро в качестве $N$ и 1% меры диспропорции ... :mrgreen:

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 23:42 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
Все это здорово, поучительно и т.п., но это не про температуру, а про энтропию.

 Профиль  
                  
 
 Re: Температура
Сообщение18.10.2015, 23:46 
Заслуженный участник
Аватара пользователя


30/01/06
72407
diakin в сообщении #1064015 писал(а):
Извините, тогда еще вопрос. Шарики могут сталкиваться под разными углами - от удара "в лоб", до удара по касательной.
Пусть в начальный момент скорости всех молекул равны по модулю, но направление движения молекул разное.
Этого достаточно, чтобы через какое-то время распределение скоростей стало максвелловским?
То есть столкновение шариков под разными углами автоматически приводит к распределению Максвелла, независимо от начальных условий?
Кроме вырожденных случаев как ниже.

Ага.

diakin в сообщении #1064015 писал(а):
Тут есть один момент (правда он вроде ни на что не влияет :-) ) - любое наперед заданное распределение по скоростям имеет вероятность равную 0. Не только, когда все шарики имеют равные скорости. Потому что это точка (в фазовом пространстве ?).
А если скорости находятся в каком-то интервале - то вероятность отлична от нуля.

Да.

Здесь два ключевых слова. Одно очень большое: мера и теория меры. В каком-то смысле, это формализация той идеи, что длина точки нулевая, и чтобы получить ненулевую длину, нужно взять некоторый непрерывный отрезок. (В многомерном случае - область.) На эту тему надо прочитать не меньше целого учебника по математике. Геометрическая вероятность, по сути, есть мера.

    Да, в фазовом пространстве. Чтобы вы этого слова не боялись, это пространство всех положений частиц ($3N$ измерений), да ещё и всех скоростей частиц (ещё $3N$ измерений). Более строго, там берут не скорости, а канонические импульсы, но здесь и сейчас это не важно. Эволюция системы со временем - это движение точки в фазовом пространстве по какой-то линии. Для разных начальных условий получаются разные линии, и в итоге всё фазовое пространство расчерчено некоторыми линиями со стрелками - фазовым потоком. Если нам условия известны не точно, а с разбросом, то в фазовом пространстве мы имеем не точку, а некоторую область конечного объёма (меры!). И дальнейшее движение этой области можно сравнить с течением жидкости, с течением подкрашеной капли в потоке жидкости. Здесь имеют место два факта: во-первых, капля сохраняет объём (теорема Лиувилля), а во-вторых, тем не менее, "расплывается" и "перемешивается" с окружающей "фазовой жидкостью", так что в итоге через некоторое время "размешивается" вообще по всему фазовому пространству (вот это та самая эргодичность; здесь играет большую роль теорема Пуанкаре о возвращении). Второе и позволяет строить термодинамику на основе статфизики. Надо иметь в виду, что эргодичностью обладают не все вообще системы, но абсолютное большинство реалистичных, "физических" (хотя здесь встречаются сюрпризы).

Второе ключевое слово - общее положение. Это формализация той идеи, что какие-то условия задач мы обычно задаём как точки в каком-то пространстве. И всякие "вырожденные случаи" обычно образуют в этом пространстве подмножества меры нуль, такие как точки, линии, и т. п. И если мы сойдём с этих подмножеств на шаг в сторону, то окажемся в некотором общем случае меры не нуль, который нас и интересует. Вот этот случай и называется "общим положением".

-- 18.10.2015 23:53:57 --

Dmitriy40 в сообщении #1064089 писал(а):
А ещё интересно подсчитать для 5 молекул вероятность "почти равного" распределения, когда слева 2 или 3 молекулы. Получается 20 исходов из 32 или $5/8$. Т.е. если не требовать строгого равенства количества молекул слева-справа, то вероятность будет больше половины - такие "почти равные" распределения более вероятны любых прочих. И чем больше молекул - тем вероятнее.

Для нечётного числа молекул строгого равенства и не получится :-) Полагаю, вы хотели рассмотреть чётное число молекул, но сумму исходов по распределениям типа $(\tfrac{n}{2}+1,\tfrac{n}{2}-1).$

 Профиль  
                  
 
 Posted automatically
Сообщение19.10.2015, 09:59 
Модератор
Аватара пользователя


16/02/11
3788
Бурашево
 i  Тема перемещена из форума «Помогите решить / разобраться (Ф)» в форум «Карантин»
Причина переноса:
Наберите все формулы и термы $\TeX$ом.
Инструкции по оформлению формул здесь или здесь (или в этом видеоролике).
См. также тему Что такое карантин, и что нужно делать, чтобы там оказаться.
После исправлений сообщите в теме Сообщение в карантине исправлено, и тогда тема будет возвращена.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 16 ]  На страницу 1, 2  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group