2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Приложения математики
Сообщение12.10.2015, 15:55 
Аватара пользователя
Хочу больше узнать о разнообразных приложениях математики, например в работе инженера.
Может быть, есть какая-то литература, не слишком специализированная, где рассказывается о всевозможных приложениях самых разных разделов математики в работе инженера. Хотелось бы, чтобы разделов математики было побольше разных, то есть не только интегралы и производные, но и, может, линейная алгебра, топология, анализ на многообразиях, функциональный анализ или ещё что-нибудь.

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 16:31 
Аватара пользователя
Большинство разделов математики в работе инженера не нужны.
Точно так же, как и математикам не нужны большинство изобретённых инженерами машин, а достаточно циркуля, рейсшины и кульмана.

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 17:15 
Аватара пользователя
Munin, ну я видел в одной из тем, как Вы сами писали, что какая-то инженерная дисциплина целиком основана на линейной алгебре. Про анализ на многообразиях и функциональный анализ я тоже где-то точно слышал, что в работе инженера они используются. Понятно, что их изучает далеко не каждый инженер. Мне нужна конкретика - где именно.

Вообще, в каких дисциплинах, изучаемых в "продвинутых" технических вузах, упомянутые разделы математики (линейная алгебра, функциональный анализ, анализ на многообразиях, может ещё что-то подобное) наиболее широко применяются?

-- 12.10.2015, 17:17 --

Это может быть и не совсем инженерная дисциплина, но в данной теме меня интересует всё, что имеет более технический характер, чем, скажем, теоретическая физика.

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 19:31 
Аватара пользователя
Mikhail_K в сообщении #1061740 писал(а):
Про анализ на многообразиях и функциональный анализ я тоже где-то точно слышал, что в работе инженера они используются.

В это как-то не верится.

Основная "инженерная" математика - это
- дифференциальные уравнения, и всякий другой матанализ;
- линейная алгебра и математическое программирование;
- вероятность и математическая статистика;
плюс численные методы ко всему этому.

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 19:55 
Аватара пользователя
Mikhail_K в сообщении #1061740 писал(а):
Это может быть и не совсем инженерная дисциплина, но в данной теме меня интересует всё, что имеет более технический характер, чем, скажем, теоретическая физика.

Тогда вся Computer Science. Ох, чего там только не применяется - и теория чисел, и абстрактная алгебра, и теория графов, и математическая логика... Вот насчет функана и анализа на многообразиях не уверен.

Что касается функана, то Фурье-анализ, вейвлет-анализ и еще куча всякого в полный рост применяется в анализе одномерных (да и многомерных) сигналов. То есть аудиозаписи, кардиограммы, сейсмограммы, вот это все.

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 20:15 
Аватара пользователя
Anton_Peplov в сообщении #1061780 писал(а):
Что касается функана, то Фурье-анализ, вейвлет-анализ

- это не функан :-)

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 20:23 
Аватара пользователя
Munin в сообщении #1061789 писал(а):
это не функан :-)

А что это?

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 20:31 
Mikhail_K в сообщении #1061720 писал(а):
Хотелось бы, чтобы разделов математики было побольше разных, то есть не только интегралы и производные, но и, может, линейная алгебра, топология, анализ на многообразиях, функциональный анализ или ещё что-нибудь.

Линейная алгебра используется везде потому, что линейные модели легче решать, и они являются хорошим приближением локально.
Многообразия популярны в литературе по автоматическому и оптимальному управлению, см. многотомное издание авторов из МВТУ. В литературе по распознаванию образов встречаются principal manifolds and nonlinear dimensionality reduction - нелинейное обобщение метода главных компонент, используя дифференцируемые многообразия. С помощью теории особенностей (катастроф) исследуют устойчивость конструкций и режимов работы.
Функциональный анализ - в математике он применяется для доказательства существования решений уравнений в частных производных и сходимости приближенных методов. Тем самым функциональный анализ потенциально можно применить ко всем уравнениям, которые встречаются в инженерной практики. Там, где есть шумы (а они есть практически везде) применяется теория случайных процессов, которая основана на функциональном анализе.

-- 12.10.2015, 19:38 --

Mikhail_K в сообщении #1061740 писал(а):
анализ на многообразиях и функциональный анализ я тоже где-то точно слышал, что в работе инженера они используются.

Инжереры разные бывают -- инженеры-технологи, инженеры-конструктора, инженеры-исследователи. Последние что-то исследуют и пишут статьи в научные журналы, они могут использовать всё что угодно. Наверное вы слышали про них.

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 21:08 
Аватара пользователя
dsge, огромное спасибо за информативный ответ! Но всё же порекомендуйте литературу, в которой математик мог бы прочитать, возможно не влезая глубоко в детали (хотя если это требуется - можно и повлезать), где применяется его математика. Дело в том, что я совсем не представляю, какие, как Вы пишете, уравнения встречаются в инженерной практике (и что там вообще встречается). Наверное, это всё-таки не уравнение колебания струны и теплопроводности, а что-то более сложное - но вот что и где об этом можно прочитать, чтобы составить первое представление? Аналогичный вопрос к использованию теории случайных процессов, тоже интересно.

Anton_Peplov, вот Computer Science меня сейчас меньше интересует. Но про применение абстрактной алгебры хотел бы узнать - если у Вас есть ссылки на литературу.

Далее, мне сгодятся даже "отдалённые ассоциации". Например, анализ на многообразиях - это дифференциальные формы, а на языке дифференциальных форм удобно записываются всякие роторы и дивергенции. Думаю, они должны где-то в инженерной практике применяться. Опять же вопрос, где именно, со ссылкой на литературу.

Munin, про функциональный анализ - есть даже книжки типа "Функциональный анализ и его приложения в механике сплошной среды". А во введении к учебнику Треногина по функциональному анализу написано: "Возрастающая прикладная направленность функционального анализа делает его необходимым для прикладников и инженеров, использующих в своей практике современные математические методы".

-- 12.10.2015, 21:10 --

Munin, в одной из соседних тем Вы сказали, что минералогия - это линейная алгебра. Причём это тоже прикладная дисциплина, изучаемая в технических вузах. Хочется как можно больше таких примеров.

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 21:10 
Аватара пользователя
Mikhail_K
Ссылок не литературу лично у меня нет, но слышал от специалиста. Можете спросить в разделе Computer Science.

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 21:33 
Аватара пользователя
Mikhail_K, разным инженерам нужна разная математика. Чем вы занимаетесь, или на кого учитесь ? Чтобы увидеть "нужную математику" достаточно взять монографию, или посмотреть статьи в научных журналах по Вашему профилю. Электронщики, спецы по обработке сигналов используют матанализ, ТФКП, операционное исчисление, дискретную математику, теорию чисел (в криптографии). Специалисты по машинам, механизмам, двигателям - Теорию дифуравнений в частных производных (моделирование механических напряжений и тепловых полей), теорию колебаний и волн, методы оптимизации. Программные продукты MaCad и MatLab - это инструмент инженера. Обычно в ВУЗах математику преподают "с запасом". Для каждой технической задачи свой набор математических дисциплин. Но, если хотите найти прикладной фронт работ для математика, нужно смотреть научные журналы. Либо общаться с инженерами, разработчиками, конструкторами. Я полагаю, у них достаточно достойных задач.

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 21:35 
Аватара пользователя
Уже 100 раз обсуждалось, начните с этих тредов

http://mathoverflow.net/questions/2556/ ... bject-area

http://mathoverflow.net/questions/62866 ... athematics

http://mathoverflow.net/questions/56547 ... athematics

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 21:42 
Аватара пользователя
Mikhail_K в сообщении #1061812 писал(а):
Но всё же порекомендуйте литературу, в которой математик мог бы прочитать, возможно не влезая глубоко в детали (хотя если это требуется - можно и повлезать), где применяется его математика.

Говорят, на эту тему можно найти много полезного на MathOverflow.

Mikhail_K в сообщении #1061812 писал(а):
Дело в том, что я совсем не представляю, какие, как Вы пишете, уравнения встречаются в инженерной практике (и что там вообще встречается). Наверное, это всё-таки не уравнение колебания струны и теплопроводности

А почему нет-то? Именно они самые. Вы что, думаете, в природе и в жизни куда-то подевались явления теплопроводности и колебаний, просто от того, что математики где-то как-то их уже проанализировали?

Mikhail_K в сообщении #1061812 писал(а):
Далее, мне сгодятся даже "отдалённые ассоциации". Например, анализ на многообразиях - это дифференциальные формы, а на языке дифференциальных форм удобно записываются всякие роторы и дивергенции. Думаю, они должны где-то в инженерной практике применяться.

Глубоко заблуждаетесь. Они удобно записываются для математиков. Для которых естественным вопросом являются обобщения. А для инженеров - вполне достаточно роторов и дивергенций самих по себе, безо всяких диф. форм. Кроме того, и многообразий никаких инженерам не надо, а надо одно родное $\mathbb{R}^3.$ А всё, что кроме этого, - это выгоды никакой не приносит, а вот трудности и головную боль при освоении - очень даже. А если студент на диф. формах отсеется? Как инженер-то он не имеет никаких изъянов.

Mikhail_K в сообщении #1061812 писал(а):
Munin, в одной из соседних тем Вы сказали, что минералогия - это линейная алгебра.

Чё-то я такого не припомню.

    Фейнман. Характер физических законов.
    Цитата:
    Математики любят придавать своим рассуждениям возможно более общую форму. Если я скажу им: «Я хочу поговорить об обычном трехмерном пространстве»,— они ответят: «Вот вам все теоремы о пространстве $n$ измерений».— «Но у меня только три измерения».— «Хорошо, подставьте $n=3$!» Оказывается, что многие сложные теоремы выглядят гораздо проще, если их применить к частному случаю. А физика интересуют только частные случаи; он никогда не интересуется общим случаем. Он говорит о чем-то конкретном; ему не безразлично, о чем говорить. Он хочет обсуждать закон тяготения в трехмерном пространстве; ему не нужны произвольные силы в пространстве $n$ измерений. Он стремится к сокращениям, потому что математики готовят свои выводы для более широкого круга проблем.
Это ещё в большей степени относится к инженерам.

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 21:46 
Аватара пользователя
Neos, я ни на кого не учусь, этот вопрос мне интересен для интереса) и прикладной фронт работ для себя я не ищу, просто хочу составить себе представление об этом фронте.
g______d, спасибо, посмотрю.
Munin,
Munin в сообщении #864254 писал(а):
Я почитал в Википедии, что такое "горное дело"... Да, минералогия основана на линале, а геофизика - на матане и дифурах.

 
 
 
 Re: Приложения математики
Сообщение12.10.2015, 21:57 
Аватара пользователя

(Оффтоп)

«Для корабля, который не знает, куда ему плыть, никакой ветер не будет попутным»

 
 
 [ Сообщений: 16 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group