2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Пирамидка Бернштейна
Сообщение06.10.2015, 09:02 
Помогите разобраться с пирамидкой Бернштейна.
Это тетраэдр. 3 грани его окрашены в красный синий и зеленый цвета. На 4 грани содержатся все 3 цвета. У меня такой вопрос – каково в данном случае пространство элементарных исходов Омега? :lol:

 
 
 
 Re: Пирамидка Бернштейна
Сообщение06.10.2015, 09:11 
Аватара пользователя
Пространство элементарных исходов состоит из четырёх равновозможных, непересекающихся событий, образующих полную группу. Нетрудно догадаться, каких. Что до Вашей (я думаю :-) ) надежды построить пространство из трёх других событий, то у них есть неприятное свойство: они пересекаются :-(

 
 
 
 Re: Пирамидка Бернштейна
Сообщение06.10.2015, 09:45 
На языке символов получится так:
$\{ A,B,C,\{ A,B,C\}\}$- каковы же вероятности?

 
 
 
 Re: Пирамидка Бернштейна
Сообщение06.10.2015, 09:59 
Аватара пользователя
Ну раз они равновероятны, не пересекаются и образуют полную группу событий, то какова вероятность каждого?
Кстати, я бы обозначил четвёртое событие $M$, чтобы не впасть в искушение трактовать $\{A,B,C\}$ иначе, чем выпадение разноцветной грани.

 
 
 
 Re: Пирамидка Бернштейна
Сообщение06.10.2015, 10:01 
Вероятности обязаны быть вот такими $\{0.25,0.25,0.25, \{0.25,0.25,0.25\}\}$, что в сумме дает полтора.

 
 
 
 Posted automatically
Сообщение07.10.2015, 08:11 
Аватара пользователя
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
Причина переноса: формулы не оформлены $\TeX$ом

vlgrech
Наберите все формулы и термы $\TeX$ом.
Инструкции по оформлению формул здесь или здесь (или в этом видеоролике).
См. также тему Что такое карантин, и что нужно делать, чтобы там оказаться.
После исправлений сообщите в теме Сообщение в карантине исправлено, и тогда тема будет возвращена.

 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Возвращено

 
 
 
 Re: Пирамидка Бернштейна
Сообщение07.10.2015, 08:31 
gris в сообщении #1059534 писал(а):
Ну раз они равновероятны, не пересекаются и образуют полную группу событий, то какова вероятность каждого?
Кстати, я бы обозначил четвёртое событие $M$, чтобы не впасть в искушение трактовать $\{A,B,C\}$ иначе, чем выпадение разноцветной грани.

$M=\{A,B,C\}$ иначе вероятность каждого из этих событий не будет равна 0.5

 
 
 
 Re: Пирамидка Бернштейна
Сообщение07.10.2015, 09:30 
Аватара пользователя
vlgrech в сообщении #1059521 писал(а):
У меня такой вопрос – каково в данном случае пространство элементарных исходов Омега?
Тут вообще нет никаких исходов, ведь ничего не происходит.

 
 
 
 Re: Пирамидка Бернштейна
Сообщение07.10.2015, 10:01 
Аватара пользователя
vlgrech, о пирамидке написано уже подробно во многих местах. Чего тут повторятся. В ней нет никаких хитростей и парадоксов. Почитайте повнимательнее, что там за события. Я Вам уже говорил о Ваших ошибках. Есть событие "выпадение красной грани" и есть "наличие на выпавшей грани красного цвета". Они разные. Почитайте самые начала теории вероятностей. О том, в каких случаях вероятности событийскладываются, а в каких перемножаются.

 
 
 
 Re: Пирамидка Бернштейна
Сообщение07.10.2015, 11:35 
Рассмотрим правильный тетраэдр, три грани которого окрашены соответственно в красный синий и зеленый цвета, а четвертая грань содержит все 3 цвета. Событие А (соответственно В, С) означает, что выпала грань, содержащая красный (соответственно синий зеленый) цвета. Вероятность каждого из этих событий равна $\frac12$ ,так как каждый цвет есть на двух гранях из четырех. Вероятность пересечения любых двух из них равна $\frac14$, так как только одна грань из четырех содержит два цвета. Так как $\frac14=\frac12\frac12$, то все события попарно независимы.
Но вероятность пресечения всех трех также равна $\frac14$, а не $\frac18$, то есть события не являются независимыми в совокупности. (Конспект Черновой Н.И. из НГУ).
Как же выглядит $\Omega$, пространство элементарных событий?
Ответ $\Omega=\{A,B,C,M\}$ не принимается. Распишите пожалуйста $M$.

-- 07.10.2015, 15:39 --

Складываются дизъюнктные события. Перемножаются независимые. А мне нужна $\Omega$.

 
 
 
 Re: Пирамидка Бернштейна
Сообщение07.10.2015, 13:06 
Аватара пользователя
vlgrech в сообщении #1060126 писал(а):
Как же выглядит $\Omega$, пространство элементарных событий?

Вы же сами это расписали:
vlgrech в сообщении #1060126 писал(а):
Событие А (соответственно В, С) означает, что выпала грань, содержащая красный (соответственно синий зеленый) цвета.

 
 
 
 Re: Пирамидка Бернштейна
Сообщение07.10.2015, 13:06 
Аватара пользователя
В конспекте чётко указано, что означает событие $A$. Это выпадение грани, на которой присутствует красный цвет. События $A$ и $B$ никак не могут входить в группу элементарных событий, поскольку они пересекаются при выпадении разноцветной грани. У Вас же не было сказано, какое событие обозначено буквой $A$. Возможно, что это выпадение только красной грани, раз Вы написали, что $P(A)=0.25$. В Конспекте же $P(A)=0.5$. Это разные события. Вначале чётко определите, что Вы обозначаете буквами. Ну возьмите другие буквы, чтобы не пересекаться с Учебником. Выпадение граней, содержащих красный, синий и зелёный цвета в качестве элементарных на подходят.
Пирамидка Бернштейна уже предполагает, что её бросают и выпадает ровно одна грань. Также предполагается, что выпадение каждой грани равновозможно. Вот на основе этих предположений в конспекте делается вывод о вероятности события "выпадение грани, содержащей красный цвет". Это событие является суммой двух событий: "Выпадение красной грани" и "Выпадение разноцветной грани".

 
 
 
 Re: Пирамидка Бернштейна
Сообщение07.10.2015, 13:07 
Аватара пользователя
vlgrech в сообщении #1060126 писал(а):
Как же выглядит $\Omega$, пространство элементарных событий?
Как нарисуете его - так и будет выглядеть. Например, всего одно событие: пирамидка как-то упала на стол.

 
 
 
 Re: Пирамидка Бернштейна
Сообщение07.10.2015, 13:11 
Аватара пользователя
Добавлю, что элементарные события не обязаны быть равновероятными. И пирамидку можно модифицировать так, что и попарная, и совместная независимость известных событий будет выполняться. Например, утяжелить разноцветную грань :-)
Ну и при желании можно с помощью операций над событиями и из $A,B,C$ в обозначениях Конспекта сконструировать нужные элементарные события.

 
 
 
 Re: Пирамидка Бернштейна
Сообщение08.10.2015, 05:29 
Я твердо знаю одно. Есть вероятностная модель. Значит есть и $\Omega$ пространство элементарных событий. Опишите его!

 
 
 [ Сообщений: 28 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group