Если в какой-то области обобщенная функция совпадает с основной, почему бы и не говорить о значении функции в точке?
А как это проверить? Мы же можем только «целиком» — совпадает ли

с выбранной обобщённой функцией или нет. Можно, конечно, брать

, только ненулевые на какой-то области (т. е. сравнивать ограничения этого и того функционалов) — тогда

сведётся к интегралу по этой области и в каком-то смысле такое говорить можно, если только показать, что так полученное значение не зависит от того, на какую область мы ограничиваем (у меня по неосведомлённости здесь сомнения). Ну и это явно вне контекста именно этой темы с неправильным определением

от ТС.

А, ну да, определение уже есть, не заметил. По написанному в стартовом сообщении может показаться, что определение используется другое.
Если почитать тему аккуратно, сразу видно, что определение вообще никакое в стартовом сообщении не может использоваться, иначе бы и вопроса не возникло о несочетаемости.
