2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3
 
 Re: Теория Галуа
Сообщение01.09.2015, 22:31 
Sonic86 в сообщении #1049818 писал(а):
Valen007 в сообщении #1049816 писал(а):
В общем-то мне все эти понятия известны, кроме неприводимого многочлена.
Так Вы тогда можете брать книги и читать, вполне возможно, что Вы даже с 1-го или 2-го раза все осилите :-)
Неприводимый многочлен (в поле) - это просто многочлен, неразложимый в произведение многочленов положительной степени (с коэффициентами из этого поля) (как простое число).


Я пытаюсь так делать, но как-то вещи ... не стыкуются. Или, например, в книге много материала о группах, но не очень понятно, как это связано с уравнениями.

 
 
 
 Re: Теория Галуа
Сообщение01.09.2015, 22:43 
 i 
Lia в сообщении #1049193 писал(а):
Valen007
...для выборочного цитирования выделенного фрагмента имеет смысл использовать кнопку "Вставка".

 
 
 
 Re: Теория Галуа
Сообщение01.09.2015, 23:09 
Аватара пользователя
Valen007 в сообщении #1049827 писал(а):
Я пытаюсь так делать, но как-то вещи ... не стыкуются. Или, например, в книге много материала о группах, но не очень понятно, как это связано с уравнениями.
А не факт, что это связано с уравнениями. Теория Галуа же не в одной теореме применяется.

 
 
 
 Re: Теория Галуа
Сообщение01.09.2015, 23:20 
Xaositect в сообщении #1049834 писал(а):
А не факт, что это связано с уравнениями. Теория Галуа же не в одной теореме применяется.


Центральное применение Галуа это ответ на вопрос о поиске формул для решения числовых уравнений.

 
 
 
 Re: Теория Галуа
Сообщение02.09.2015, 08:23 
Valen007 в сообщении #1049827 писал(а):
в книге много материала о группах, но не очень понятно, как это связано с уравнениями.
А посты выше Вы читали?
Давайте я последний раз попробую.
Мы ищем решение алгебраического уравнения $f(x)=0$ с рациональными коэффициентами в радикалах. Радикалы имеют вид $\sqrt[5]{a+\sqrt[3]{b+\sqrt{c}}}$. Уравнение разрешается в поле $\mathbb{Q}(\sqrt[5]{a+\sqrt[3]{b+\sqrt{c}}})$. Радикал строится последовательно: сначала $\sqrt{c}$, потом $\sqrt[3]{b+\sqrt{c}}$, и т.д. Этим радикалам соответствуют поля $P_0=\mathbb{Q}$, $P_1=\mathbb{Q}(\sqrt{c})$, $P_2=\mathbb{Q}(\sqrt[3]{b+\sqrt{c}})$, $P_3=\mathbb{Q}(\sqrt[5]{a+\sqrt[3]{b+\sqrt{c}}})$. Эти поля образуют цепь расширений $P_0\subset P_1\subset P_2\subset P_3$. В этой цепи каждое расширение поля $P$ имеет вид $P(\alpha)$, где $\alpha^k=d\in P$ для какого-то $k$. Пусть $\epsilon_k$ - корни из единицы $k$-й степени. Для простоты будем считать, что $\epsilon_k \in P$. Тогда мы получаем, что $P(\alpha)$ - это расширение $P$ с помощью корня $\sqrt[k]{d}$, когда группа Галуа $\operatorname{Gal}(P(\alpha),P)$ циклична (вот группы полезли!). Значит вся цепь расширений имеет цикличные группы Галуа, а вся цепь имеет разрешимую группу Галуа $\operatorname{Gal}(\mathbb{Q}(\sqrt[5]{a+\sqrt[3]{b+\sqrt{c}}}), \mathbb{Q})$.

Valen007 в сообщении #1049838 писал(а):
решения числовых уравнений.
:shock: Нет таких уравнений.
Теория Галуа используется для решения алгебраических уравнений.

 
 
 
 Re: Теория Галуа
Сообщение03.09.2015, 21:53 
Sonic86 в сообщении #1049875 писал(а):
А посты выше Вы читали?
Давайте я последний раз попробую.
Мы ищем решение алгебраического уравнения $f(x)=0$ с рациональными коэффициентами в радикалах. Радикалы имеют вид $\sqrt[5]{a+\sqrt[3]{b+\sqrt{c}}}$. Уравнение разрешается в поле $\mathbb{Q}(\sqrt[5]{a+\sqrt[3]{b+\sqrt{c}}})$. Радикал строится последовательно: сначала $\sqrt{c}$, потом $\sqrt[3]{b+\sqrt{c}}$, и т.д. Этим радикалам соответствуют поля $P_0=\mathbb{Q}$, $P_1=\mathbb{Q}(\sqrt{c})$, $P_2=\mathbb{Q}(\sqrt[3]{b+\sqrt{c}})$, $P_3=\mathbb{Q}(\sqrt[5]{a+\sqrt[3]{b+\sqrt{c}}})$. Эти поля образуют цепь расширений $P_0\subset P_1\subset P_2\subset P_3$. В этой цепи каждое расширение поля $P$ имеет вид $P(\alpha)$, где $\alpha^k=d\in P$ для какого-то $k$. Пусть $\epsilon_k$ - корни из единицы $k$-й степени. Для простоты будем считать, что $\epsilon_k \in P$. Тогда мы получаем, что $P(\alpha)$ - это расширение $P$ с помощью корня $\sqrt[k]{d}$, когда группа Галуа $\operatorname{Gal}(P(\alpha),P)$ циклична (вот группы полезли!). Значит вся цепь расширений имеет цикличные группы Галуа, а вся цепь имеет разрешимую группу Галуа $\operatorname{Gal}(\mathbb{Q}(\sqrt[5]{a+\sqrt[3]{b+\sqrt{c}}}), \mathbb{Q})$.


Совсем не прояснило ситуацию для меня.
Что значит "рациональными коэффициентами в радикалах"?

 
 
 
 Re: Теория Галуа
Сообщение03.09.2015, 22:00 
Valen007 в сообщении #1050282 писал(а):
Что значит "рациональными коэффициентами в радикалах"?
Это значит "коэффициенты многочлена $f$ - рациональные числа. Мы ищем решение уравнения $f(x)=0$ в радикалах".

Ладно, забейте, я же говорю, я лишь пытаюсь идею описать. Если мой текст непонятен, то увы - он на точность и не рассчитан. Читайте Постникова, Артина, Кострикина, ван дер Вардена, Чеботарева.

 
 
 
 Re: Теория Галуа
Сообщение03.09.2015, 22:13 
Есть ещё страшная книжка

Хованский А. Г. Топологическая теория Галуа. Разрешимость и неразрешимость уравнений в конечном виде,

Это просто для сравнения нет. Там обычной теории Галуа тоже отведено какое-то место. Не стоит открывать. Я в неё залез в праздном любопытстве они уже идут насчёт всяких уравнений вида $ax = \sin x$, немного беги почитал и понял, что лучше бежать как-нибудь потом прячься глубже попробовать снова, пока они не пришли за тоб 

 
 
 
 Re: Теория Галуа
Сообщение04.09.2015, 00:40 
Аватара пользователя
Книгу Артина "Теория Галуа" можно не спеша прочитать за пару вечеров. И вообще, все эти "невозможно ни при каких обстоятельствах осилить быстрее, чем за $N$ лет" опровергаются историческим развитием образованной части человечества.

 
 
 
 Re: Теория Галуа
Сообщение04.09.2015, 01:06 
Аватара пользователя
arseniiv в сообщении #1050288 писал(а):
Хованский А. Г. Топологическая теория Галуа. Разрешимость и неразрешимость уравнений в конечном виде,

Ай, драгоценная книга! Ай, спасибо!

 
 
 [ Сообщений: 40 ]  На страницу Пред.  1, 2, 3


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group